首页> 外文学位 >Gravity powered locomotion and active control of a family tree of robotic mechanisms.
【24h】

Gravity powered locomotion and active control of a family tree of robotic mechanisms.

机译:重力驱动的运动和对机器人机制家族树的主动控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents several novel approaches to identify and control the locomotion modes of a collection of energetically efficient robots that can produce stable gait. One cannot ignore the promise of robots that can walk by using very little energy. Gravity powered bipeds provide ample proof that this is possible. It is conceivable that mechanisms that are much simpler than legged robots can also produce gravity powered locomotion. It is also plausible that one can gain deeper understanding of the dynamics of such simple mechanisms.;Evolutionary biology tells us that one can learn a great deal by studying the hereditary traits of organisms that evolve over generations. Thus, we foresee great benefits in analyzing a chain of mechanisms that span from the very simple to the progressively more complicated. We have generated a family of five generations of planar mechanisms, with members that can be as simple as a bouncing particle or as complex as a five link biped. In this dissertation we have studied the gravity powered locomotion (passive gaits) of the first three generations by placing them on inclined planes. The elements of the first three generations are: bounding ball, baton, and three-mass two-link system. We demonstrated that not only each system inherits all the passive gait patterns of its ancestors but also it can create its own.;We discovered three types of passive gait patterns, each including various gait modes, for the first three generations of our systems: Hopping, Tapping, and Walking. The bouncing particle can generate a passive hopping gait. The baton inherits the hopping gait and generates quasi-periodic hopping modes and a new tapping gait with three modes. The three-mass system inherits all gaits and modes of the baton and generates two additional tapping modes (crawling and flapping). In addition, this last system generates bipedal locomotion. All gaits of our passive systems are structurally unstable. The passive hopping and tapping gaits require that the coefficient of restitution of the masses that periodically collide with the ground to be equal to one (e = 1). Bipedal locomotion requires e = 0. A minimum surface friction coefficient is another necessary physical condition for the passive gaits. Hopping and tapping gaits are significantly less susceptible to changes in locomotion surface slope angle than is the bipedal locomotion of the three-mass system.;We used the impulsive control and nonlinear control theories to actively maintain the passive gaits of our systems. We have shown that the hopping, tapping, and walking gaits are controllable with impulsive actuation. For all the systems, a Lyapunov based impulsive controller is sufficient to produce energetically efficient and asymptotically stable hopping and tapping gaits on arbitrary ground slope angles. For the three-mass system, a Lyapunov based impulsive controller is sufficient to produce non-scuffing, energetically efficient, and asymptotically stable walking on flat surfaces. A potential energy shaping continuous controller in addition to the Lyapunov based impulsive controller is sufficient to produce non-scuffing, energetically efficient, and asymptotically stable walking on arbitrary ground slope angles.;We have developed a preliminary contact based rule of passive gait patterns that seems to work well for the first three generations of the family. We think that this rule can be extended to the more complex, last two generations of the family. The use of this rule will make it possible to catalogue the majority of the passive gait patterns of the systems we consider. In addition, as we have seen in our study, it will pave the way to develop an impulsive active control scheme.;Having a catalogue of gait patterns for robotic locomotion systems, that are progressively related in structure, can be the best road map to design reconfigurable locomotors. Such reconfigurable robots would become potentially capable to separate or cluster into specialized forms, depending on the tasks they are about to perform.
机译:本文提出了几种新颖的方法来识别和控制可以产生稳定步态的高能效机器人集合的运动模式。人们不能忽视机器人可以通过消耗很少的能量来行走的承诺。重力驱动的两足动物提供了充分的证据证明这是可能的。可以想象,比腿式机器人简单得多的机构也可以产生重力驱动的运动。人们有可能对这种简单机制的动力学有更深的了解。进化生物学告诉我们,通过研究代代相传的生物的遗传特性,人们可以学到很多东西。因此,我们预见到分析一系列从非常简单到逐渐复杂的机制的巨大好处。我们已经生成了五代平面机制家族,其成员可以像弹跳粒子一样简单,也可以像两足动物的五连杆一样复杂。在本文中,我们研究了前三代人的重力运动(被动步态),方法是将它们放在倾斜平面上。前三代的元素是:包围球,警棍和三质量两连杆系统。我们证明了每个系统不仅继承了其祖先的所有被动步态模式,而且可以创建自己的模式;我们发现了系统前三代的三种被动步态模式,每种都包括各种步态模式: ,点击和行走。弹跳粒子可以产生被动的跳跃步态。接力棒继承了跳跃步态并生成准周期跳跃模式和具有三种模式的新敲击步态。三质量系统继承了接力棒的所有步态和模式,并生成了两个附加的敲击模式(爬行和拍打)。另外,最后一个系统生成两足运动。我们的被动系统的所有步态在结构上都是不稳定的。被动跳动和敲击步态要求定期与地面碰撞的质量的恢复系数等于1(e = 1)。双足运动需要e =0。最小表面摩擦系数是被动步态的另一个必要物理条件。与三质量系统的双足运动相比,跳跃和拍击步态对运动表面倾斜角的变化的敏感度要低得多。我们使用脉冲控制和非线性控制理论来主动保持系统的被动步态。我们已经表明,跳动,敲击和行走步态可以通过脉冲驱动来控制。对于所有系统,基于Lyapunov的脉冲控制器足以在任意地面倾斜角度上产生能量高效且渐近稳定的跳跃和攻丝步态。对于三质量系统,基于Lyapunov的脉冲控制器足以在平坦表面上产生无划痕,高效节能且渐近稳定的行走。除了基于Lyapunov的脉冲控制器外,一种势能整形连续控制器还足以在任意地面坡度角上产生无划伤,高能效且渐近稳定的行走方式;;我们已经开发了一种基于接触的被动步态模式的初步规则,该规则似乎为家庭的前三代人工作得很好。我们认为,该规则可以扩展到家庭的更复杂的后两代。此规则的使用将使我们考虑的系统的大多数被动步态模式分类成为可能。此外,正如我们在研究中所看到的那样,这将为开发一种脉冲主动控制方案铺平道路。具有结构逐步相关的机器人运动系统的步态模式目录,可能是实现这一目标的最佳路线图。设计可重新配置的移动马达。根据它们将要执行的任务,此类可重新配置的机器人将有可能能够分离或群集为专用形式。

著录项

  • 作者

    Tavakoli Targhi, Ali.;

  • 作者单位

    Southern Methodist University.;

  • 授予单位 Southern Methodist University.;
  • 学科 Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号