首页> 外文学位 >Efficient Deformations Using Custom Coordinate Systems.
【24h】

Efficient Deformations Using Custom Coordinate Systems.

机译:使用自定义坐标系的有效变形。

获取原文
获取原文并翻译 | 示例

摘要

Physics-based deformable object simulations have been playing an increasingly important role in 3D computer graphics. They have been adopted for humanoid character animations as well as special effects such as fire and explosion. However, simulations of large, complex systems can consume large amounts of computation and mostly remain offline, which prohibits their use for interactive applications.;We present several highly efficient schemes for deformable object simulation using custom spatial coordinate systems. Our choices span the spectrum of subspace to full space and both Lagrangian and Eulerian viewpoints.;Subspace methods achieve massive speedups over their "full space" counterparts by drastically reducing the degrees of freedom involved in the simulation. A long standing difficulty in subspace simulation is incorporating various non-linearities. They introduce expensive computational bottlenecks and quite often cause novel deformations that are outside the span of the subspace.;We address these issues in articulated deformable body simulations from a Lagrangian viewpoint. We remove the computational bottleneck of articulated self-contact handling by deploying a pose-space cubature scheme, a generalization of the standard "cubature" approximation. To handle novel deformations caused by arbitrary external collisions, we introduce a generic approach called subspace condensation, which activates full space simulation on the fly when an out-of-basis event is encountered. Our proposed framework efficiently incorporates various non-linearities and allows subspace methods to be used in cases where they previously would not have been considered.;Deformable solids can interact not only with each other, but also with fluids. We design a new full space method that achieves a two-way coupling between deformable solids and an incompressible fluid where the underlying geometric representation is entirely Eulerian. No-slip boundary conditions are automatically satisfied by imposing a global divergence-free condition. We are able to simulate multiple solids undergoing complex, frictional contact while simultaneously interacting with a fluid. The complexity of the scenarios we are able to simulate surpasses those that we have seen from any previous method.
机译:基于物理的可变形对象模拟在3D计算机图形学中起着越来越重要的作用。它们已被用于类人角色动画以及特殊效果,例如火灾和爆炸。但是,大型复杂系统的仿真可能会消耗大量计算量,并且大多数情况下都处于脱机状态,这使其无法用于交互式应用程序。我们提出了几种使用自定义空间坐标系的可变形对象仿真的高效方案。我们的选择跨越了子空间到全空间的范围以及拉格朗日和欧拉的观点。子空间方法通过大大降低模拟所涉及的自由度,在“全空间”对应方法上实现了巨大的加速。子空间仿真中长期存在的困难是合并了各种非线性。它们引入了昂贵的计算瓶颈,并且经常导致子空间范围之外的新颖变形。;我们从拉格朗日角度出发,在铰接式可变形体模拟中解决了这些问题。我们通过部署姿势空间孵化器方案(标准“孵化器”近似值的一般化)来消除铰接式自动接触处理的计算瓶颈。为了处理由任意外部碰撞引起的新颖变形,我们引入了一种称为子空间凝结的通用方法,该方法会在遇到基础失常事件时即时激活全空间模拟。我们提出的框架有效地结合了各种非线性,并允许在以前没有考虑过子空间的情况下使用子空间方法;可变形固体不仅可以彼此相互作用,而且可以与流体相互作用。我们设计了一种新的全空间方法,该方法在可变形固体与不可压缩流体之间实现双向耦合,其中基本几何表示完全是欧拉式的。通过强加全局无散度条件,可以自动满足防滑边界条件。我们能够模拟多个固体,这些固体在与流体相互作用的同时会经历复杂的摩擦接触。我们能够模拟的场景的复杂性超过了我们从任何以前的方法中看到的场景。

著录项

  • 作者

    Teng, Yun.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号