首页> 外文学位 >C*-algebras of labeled graphs and *-commuting endomorphisms.
【24h】

C*-algebras of labeled graphs and *-commuting endomorphisms.

机译:标记图的C *代数和*交换内同态。

获取原文
获取原文并翻译 | 示例

摘要

My research lies in the general area of functional analysis. I am particularly interested in C*-algebras and related dynamical systems. From the very beginning of the theory of operator algebras, in the works of Murray and von Neumann dating from the mid 1930's, dynamical systems and operator algebras have led a symbiotic existance. Murray and von Neumann's work grew from a few esoteric, but clearly original and prescient papers, to a major river of contemporary mathematics. My work lies at the confluence of two important tributaries to this river.;On the one hand, the operator algebras that I study are C*-algebras that are built from graphs. On the other, the dynamical systems on which I focus are symbolic dynamical systems of various types. My goal is to use dynamical systems theory to construct new and interesting C*-algebras and to use the algebraic invariants of these algebras to reveal properties of the dynamics. My work has two fairly distinct strands: One deals with C*-algebras built from irreversible dynamical systems. The other deals with group actions on graph C*-algebras and their generalizations.
机译:我的研究属于功能分析的一般领域。我对C *代数和相关的动力学系统特别感兴趣。从算子代数理论的最开始,在1930年代中期的Murray和von Neumann的著作中,动力学系统和算子代数就已经共生。穆雷和冯·诺依曼的著作从几篇深奥的,但显然具有原创性和先见性的论文发展成为当代数学的主流。我的工作在于两条重要支流汇合到这条河上。一方面,我研究的算子代数是从图构建的C *代数。另一方面,我关注的动力系统是各种类型的符号动力系统。我的目标是使用动力学系统理论来构造新的有趣的C *代数,并使用这些代数的代数不变量来揭示动力学的性质。我的工作有两个截然不同的分支:一是处理由不可逆动力学系统构建的C *代数。另一个涉及图C *-代数的组动作及其推广。

著录项

  • 作者

    Willis, Paulette Nicole.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号