首页> 外文学位 >Single-molecule force spectroscopy studies of fibrin 'A-a' polymerization interactions via the atomic force microscope.
【24h】

Single-molecule force spectroscopy studies of fibrin 'A-a' polymerization interactions via the atomic force microscope.

机译:通过原子力显微镜对血纤蛋白“ A-a”聚合反应的单分子力谱研究。

获取原文
获取原文并翻译 | 示例

摘要

Fibrin, the polymerized form of the soluble plasma protein fibrinogen, plays a critical role in hemostasis as the structural scaffold of blood clots. The primary functions of fibrin are to withstand the shear forces of blood flow and provide mechanical stability to the clot, protecting the wound. While studies have investigated the mechanical properties of fibrin constructs, the response to force of critical polymerization interactions such as the 'A--a' knob--hole interaction remains unclear. Herein, the response of the 'A--a' bond to force was examined at the single-molecule level using the atomic force microscope. Force spectroscopy methodology was developed to examine the 'A--a' interaction while reducing the incidence of both nonspecific and multiple molecule interactions. The rupture of this interaction resulted in a previously unreported characteristic force profile comprised of up to four events. We hypothesized that the first event represented reorientation of the fibrinogen molecule, the second and third represented unfolding of structures in the D region of fibrinogen, and the last event was the rupture of the 'A--a' bond weakened by prior structural unfolding. The configuration, molecular extension, and kinetic parameters of each event in the characteristic pattern were examined to compare the unfolding of fibrin to other proteins unfolded by force. Fitting the pattern with polymer models showed that the D region of fibrinogen could lengthen by ∼50% of the length of a fibrin monomer before rupture of the 'A--a' bond. Analysis showed that the second and third events had kinetic parameters similar to other protein structures unfolded by force. Studies of the dependence of the characteristic pattern on calcium, concentration of sodium chloride, pH, and temperature demonstrated that the incidence of the last event was affected by solution conditions. However, only low pH and high temperatures reduced the probability that an interaction was characteristic, indicating that the force required to rupture the 'A--a' bond was less sensitive than the bond's resilience to structural unfolding to solution conditions. The structural unfolding that precedes the rupture of the 'A--a' bond may prove significant in the polymerization and mechanical properties of fibrin.
机译:纤维蛋白是可溶性血浆蛋白纤维蛋白原的聚合形式,在止血过程中起着血凝块的结构支架的作用。纤维蛋白的主要功能是承受血流的剪切力并为凝块提供机械稳定性,从而保护伤口。尽管研究已经研究了纤维蛋白结构的机械性能,但对于关键的聚合反应(例如``A--a''旋钮-孔相互作用)的作用力的响应仍然不清楚。在此,使用原子力显微镜在单分子水平上检查了“ A-a”键对力的响应。力谱方法学被开发用于检查'A-a'相互作用,同时减少非特异性和多分子相互作用的发生率。这种相互作用的破裂导致以前未报告的特征力曲线,其中包括多达四个事件。我们假设第一个事件代表纤维蛋白原分子的重新定向,第二个和第三个事件代表纤维蛋白原D区结构的展开,最后一个事件是“ A-a”键的断裂,该键被先前的结构展开削弱了。检查了特征模式中每个事件的构型,分子延伸和动力学参数,以比较纤维蛋白与通过力展开的其他蛋白质的展开。用聚合物模型拟合该图表明,在“ A-a”键断裂之前,纤维蛋白原的D区可以延长到纤维蛋白单体长度的50%左右。分析表明,第二和第三事件的动力学参数类似于用力展开的其他蛋白质结构。对特征模式对钙,氯化钠浓度,pH和温度的依赖性的研究表明,最后事件的发生受溶液条件的影响。但是,只有低pH值和高温才降低了相互作用具有特征性的可能性,这表明断裂'A-a'键所需的作用力不如键对结构在溶液条件下展开的弹性敏感。 ``A-a''键断裂之前的结构展开可能证明对血纤蛋白的聚合和机械性能具有重要意义。

著录项

  • 作者

    Averett, Laurel E.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Physics General.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号