首页> 外文学位 >Logic Realization Using Regular Structures in Quantum-Dot Cellular Automata (QCA).
【24h】

Logic Realization Using Regular Structures in Quantum-Dot Cellular Automata (QCA).

机译:在量子点元胞自动机(QCA)中使用规则结构的逻辑实现。

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor industry seems to approach a wall where physical geometry and power density issues could possibly render the device fabrication infeasible. Quantum-dot Cellular Automata (QCA) is a new nanotechnology that claims to offer the potential of manufacturing even denser integrated circuits, which can operate at high frequencies and low power consumption. In QCA technology, the signal propagation occurs as a result of electrostatic interaction among the electrons as opposed to flow to the electrons in a wire. The basic building block of QCA technology is a QCA cell which encodes binary information with the relative position of electrons in it. A QCA cell can be used either as a wire or as logic. In QCA, the directionality of the signal flow is controlled by phase-shifted electric field generated on a separate layer than QCA cell layer. This process is called clocking of QCA circuits.;The logic realization using regular structures such as PLAs have played a significant role in the semiconductor field due to their manufacturability, behavioral predictability and the ease of logic mapping. Along with these benefits, regular structures in QCA's would allow for uniform QCA clocking structure. The clocking structure is important because the pioneers of QCA technology propose it to be fabricated in CMOS technology. This thesis presents a detailed design implementation and a comparative analysis of logic realization using regular structures, namely Shannon-Lattices and PLAs for QCAs. A software tool was developed as a part of this research, which automatically generates complete QCA-Shannon-Lattice and QCA-PLA layouts for single-output Boolean functions based on an input macro-cell library. The equations for latency and throughput for the new QCA-PLA and QCA-Shannon-Lattice design implementations were also formulated. The correctness of the equations was verified by performing simulations of the tool-generate layouts with QCADesigner. A brief design trade-off analysis between the tool-generated regular structure implementation and the unstructured custom layout in QCA is presented for the full-adder circuit.
机译:半导体行业似乎陷入困境,因为物理几何形状和功率密度问题可能会使器件制造不可行。量子点元胞自动机(QCA)是一种新的纳米技术,声称具有制造甚至更高密度的集成电路的潜力,该集成电路可以在高频和低功耗下工作。在QCA技术中,信号传播是电子之间发生静电相互作用的结果,而不是流到导线中的电子。 QCA技术的基本组成部分是QCA电池,该电池对带有电子相对位置的二进制信息进行编码。 QCA单元既可以用作导线也可以用作逻辑。在QCA中,信号流的方向性是由与QCA单元层不同的层上产生的相移电场控制的。这个过程称为QCA电路的时钟。使用常规结构(例如PLA)的逻辑实现由于其可制造性,行为可预测性和逻辑映射的简便性,在半导体领域发挥了重要作用。伴随着这些好处,QCA中的常规结构将允许统一的QCA时钟结构。时钟结构很重要,因为QCA技术的先驱者提出将其用CMOS技术制造。本文提出了一种详细的设计实现,并使用QCA的常规结构Shannon-Lattices和PLA实现了逻辑实现的比较分析。作为此研究的一部分,开发了一种软件工具,该工具会基于输入宏单元库为单输出布尔函数自动生成完整的QCA-Shannon-Lattice和QCA-PLA布局。还制定了新的QCA-PLA和QCA-Shannon-Lattice设计实现的延迟和吞吐量方程。通过使用QCADesigner对工具生成的布局进行仿真,可以验证方程式的正确性。针对全加法器电路,给出了工具生成的规则结构实现与QCA中非结构化定制布局之间的简短设计折衷分析。

著录项

  • 作者

    Singhal, Rahul.;

  • 作者单位

    Portland State University.;

  • 授予单位 Portland State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2011
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号