首页> 外文学位 >Concentric nanoshells and plasmon hybridization.
【24h】

Concentric nanoshells and plasmon hybridization.

机译:同心纳米壳和等离激元杂交。

获取原文
获取原文并翻译 | 示例

摘要

The optical properties of metal nanostructures are related to their plasmon response, which is sensitively dependent on nanostructure geometry and environment. The metallodielectric, core-shell structure of nanoshells represents a unique geometry allowing for the systematic tunability of the plasmon resonance of the nanostructure. This is accomplished by varying the relative dimensions of the core and shell layers. Fabrication of a nanoshell particle with a strong plasmon resonance is dependent on shell quality, which is strongly dependent on the careful preparation of the metal shell. The resonant response of metal nanostructures can also be modified through plasmon-plasmon interactions. This work focuses on the fabrication of nanoparticles with a multilayer, concentric-shell structure consisting of a silica core, inner gold shell layer, silica spacer layer, and an outer gold shell layer. This concentric nanoshell particle is fabricated through the controlled growth of a nanometer-scale silica layer around a preformed nanoshell. The silica layer was found to increase the thermal and chemical stability of the nanoshell particles. A second gold shell could be grown on this layer to generate the concentric nanoshell particle. This layered nanoparticle geometry has a plasmon resonance dependent on the interaction between the inner and outer shell plasmons. This interaction can be explained in terms of a sphere-cavity model of plasmon hybridization derived from a semi-classical model of the plasmon resonance. Varying the dimensions of the concentric shell layers can independently and systematically control the plasmon resonance of the inner and outer shell, which effects the interaction between the two plasmons. The coupling between the inner and outer shell plasmons was investigated experimentally by varying the concentric nanoshell dimensions, specifically examining how the spectral detuning of the inner and outer shell resonances and spatial interaction between inner and outer shell plasmons determine the nanoparticle's optical properties. Calculations using Mie scattering theory to model the nanoshell plasmon response agree quantitatively with experimental measurements of the nanoshell plasmon resonance in both the single-layer and multi-layer regime.
机译:金属纳米结构的光学性质与其等离激元响应有关,其敏感地取决于纳米结构的几何形状和环境。纳米壳的金属电介质,核-壳结构代表了独特的几何形状,从而允许纳米结构的等离子体共振的系统可调性。这是通过改变芯层和壳层的相对尺寸来实现的。具有强等离振子共振的纳米壳颗粒的制造取决于壳的质量,而壳的质量很大程度上取决于金属壳的精心制备。金属纳米结构的共振响应也可以通过等离激元-等离激元相互作用来改变。这项工作着重于制造具有多层同心壳结构的纳米颗粒,该结构由二氧化硅核,内部金壳层,二氧化硅间隔层和外部金壳层组成。这种同心的纳米壳粒子是通过围绕预先形成的纳米壳的纳米级二氧化硅层的受控生长而制造的。发现二氧化硅层增加了纳米壳颗粒的热和化学稳定性。可以在该层上生长第二个金壳,以生成同心纳米壳颗粒。该层状纳米粒子几何形状具有取决于内壳等离子体激元和外壳等离子体激元之间的相互作用的等离子体激元共振。可以根据等离激元共振的半经典模型导出的等离激元杂交的球腔模型来解释这种相互作用。改变同心壳层的尺寸可以独立和系统地控制内壳和外壳的等离激元共振,这影响了两个等离激元之间的相互作用。通过改变同心纳米壳尺寸来实验研究内壳等离子体激元之间的耦合,特别是检查内壳共振的光谱失谐以及内壳等离子体激元之间的空间相互作用如何确定纳米粒子的光学性质。使用Mie散射理论对纳米壳等离子体激元响应进行建模的计算与单层和多层体系中纳米壳等离子体激元共振的实验测量在数量上一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号