首页> 外文学位 >Molecular and biochemical adaptations conferring cold-hardiness in two gall insects.
【24h】

Molecular and biochemical adaptations conferring cold-hardiness in two gall insects.

机译:分子和生化适应赋予两只gall虫抗寒性。

获取原文
获取原文并翻译 | 示例

摘要

Terrestrial insects have evolved molecular and biochemical adaptations that have allowed them to exploit virtually all climates on earth including adaptations that allow survival at subzero temperatures during the winter months by insects living in temperate and polar climates. Two strategies of insect cold-tolerance have emerged: freeze-tolerance and freeze-avoidance. Freeze-tolerant insects can endure extracellular ice formation, whereas freeze-avoiding species strongly depress the supercooling point of their body fluids to remain liquid over the winter. The research reported in this thesis analyzed molecular strategies of cold tolerance, hypometabolism and hypoxia tolerance in both kinds of insects using as models the freeze-avoiding gall moth, Epiblema scudderiana, and the freeze-tolerant gall fly, Eurosta solidaginis . Activities of ion motive ATPases [Na+K+ATPase, sarco(endo)plasmic Ca2+ATPase] were strongly reduced over the winter months, contributing to energy-saving hypometabolism, and in vitro studies indicated that the control mechanism involved was reversible protein phosphorylation. Differential gene expression in response to cold, subzero or hypoxia exposures was evaluated using three different methods (cDNA library construction and screening, nylon macroarrays, DNA microarrays) to identify key protein products that could contribute to cold and hypoxic tolerance. These studies identified a wide variety of genes as cold responsive that have never previously been associated with cold tolerance. Enzyme activities, transcript levels, and DNA content of mitochondrial genes were evaluated under cold and hypoxia stresses and indicated a role for mitochondria in cold and hypoxia tolerance that is more dynamic that previously understood and that differs significantly between freeze avoiding and freeze tolerant species. Other studies indicated an important role for signal transduction via the mitogen-activated protein kinase (MAPK) superfamily in cold and hypoxia tolerance, particularly the role of the p38 MAPKs, which showed clear differences between the freeze-tolerant and freeze-avoiding species. Finally, examination of the nuclear factor (NF)-kappaB signaling pathway indicated that the suppression of the inflammatory response appears to be significant in the winter survival of both species and may be a crucial difference between hypoxia-tolerance and hypoxia-intolerance.
机译:陆地昆虫已经进化出分子和生物化学适应性,从而使它们能够利用地球上几乎所有的气候,包括使温带和极地气候下的昆虫能够在冬季在零度以下的温度下生存的适应性气候。已经出现了两种昆虫耐寒性策略:耐寒性和避免冷冻。耐冻昆虫可以忍受细胞外冰的形成,而避免冷冻的物种会强烈降低其体液的过冷点,从而在整个冬季保持液态。本论文报道的研究以防冻胆蛾Epiblema scudderiana和耐冻胆蝇Eurosta solidaginis为模型,分析了两种昆虫的耐寒性,低代谢和低氧耐受性的分子策略。在冬季,离子动力ATP酶[Na + K + ATPase,肌(内)钙Ca2 + ATPase]的活性大大降低,有助于节能低代谢,体外研究表明,其控制机制是可逆的蛋白质磷酸化。使用三种不同的方法(cDNA文库构建和筛选,尼龙宏阵列,DNA微阵列)评估了对寒冷,零下或低氧暴露的响应的差异基因表达,以鉴定可能导致寒冷和低氧耐受性的关键蛋白质产物。这些研究确定了与寒冷相关的各种基因,这些基因以前从未与耐寒性相关。在寒冷和低氧胁迫下评估了线粒体基因的酶活性,转录水平和DNA含量,表明线粒体在寒冷和低氧耐受性中的作用比以前所理解的更具动态性,并且在避免冷冻和耐受冷冻的物种之间存在显着差异。其他研究表明,通过有丝分裂原激活的蛋白激酶(MAPK)超家族进行的信号转导在耐寒和耐缺氧方面具有重要作用,尤其是p38 MAPK的作用,这表明耐冻和避免冷冻物种之间存在明显差异。最后,核因子(NF)-kappaB信号通路的检查表明,炎症反应的抑制在两个物种的冬季存活中似乎都很重要,并且可能是耐缺氧性和耐缺氧性之间的关键差异。

著录项

  • 作者

    McMullen, David C.;

  • 作者单位

    Carleton University (Canada).;

  • 授予单位 Carleton University (Canada).;
  • 学科 Biology Molecular.; Chemistry Biochemistry.; Biology Entomology.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 251 p.
  • 总页数 251
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;生物化学;昆虫学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号