首页> 外文学位 >Behavior of a one-dimensional nonlinear flux-limited diffusion equation and finite speed of propagation.
【24h】

Behavior of a one-dimensional nonlinear flux-limited diffusion equation and finite speed of propagation.

机译:一维非线性通量限制扩散方程的行为和有限的传播速度。

获取原文
获取原文并翻译 | 示例

摘要

It is well-known that the classical diffusion equation has an unrealistic property that it gives infinite speed of propagation. That is to say that if the initial data is non- negative and positive somewhere then the solution (temperature etc.) at any later time is positive everywhere. Here we modify the classical diffusion equation and obtain a nonlinear equation which possibly exhibits finite speed of propagation. We do so by modifying the Fick's (or Fourier) law to be a bounded function of gradient. The equation is analyzed using analytical, perturbation, and numerical methods. The equation is also analyzed using similarity solutions to find a family of solutions exhibiting slowed diffusion. Using perturbation methods we determine the analytic solution at zeroth and first order. Numerical solution is also obtained by using finite difference method, using forward difference for time and central difference for space. Our results show that the diffusion in our case is much slower than the classical one.
机译:众所周知,经典扩散方程具有不现实的性质,即它给出了无限的传播速度。也就是说,如果初始数据在某处为非负且为正,则以后任何时候的溶液(温度等)在各处均为正。在这里,我们修改了经典的扩散方程,并获得了可能表现出有限传播速度的非线性方程。为此,我们将菲克(或傅里叶)定律修改为梯度的有界函数。使用解析,摄动和数值方法分析该方程。还使用相似性解决方案对方程进行了分析,以找到表现出缓慢扩散的一系列解决方案。使用摄动方法,我们确定了零阶​​和一阶解析解。数值解也可以通过有限差分法,时间正向差分和空间中心差分来获得。我们的结果表明,在我们的案例中,扩散比经典的扩散要慢得多。

著录项

  • 作者

    Ahmed, Saleem.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 58 p.
  • 总页数 58
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号