首页> 外文学位 >Stress-strain management of heteroepitaxial polycrystalline silicon carbide films.
【24h】

Stress-strain management of heteroepitaxial polycrystalline silicon carbide films.

机译:异质外延多晶硅碳化硅膜的应力应变管理。

获取原文
获取原文并翻译 | 示例

摘要

Silicon carbide (SiC) is one of the hardest known materials and is also, by good fortune, a wide bandgap semiconductor. While the application of SiC for high-temperature and high-power electronics is fairly well known, its utility as a highly robust, chemically-inert material for microelectrical mechanical systems (MEMS) is only beginning to be well recognized. SiC can be grown on both native SiC substrates or on Si using heteroepitaxial growth methods which affords the possibility to use Si micromachining methods to fabricate advanced SiC MEMS devices.;The control of film stress in heteroepitaxial silicon carbide films grown on polysilicon-on-oxide substrates has been investigated. It is known that the size and structure of grains within polycrystalline films play an important role in determining the magnitude and type of stress present in a film, i.e. tensile or compressive. Silicon carbide grown on LPCVD polysilicon seed-films exhibited a highly-textured grain structure and displayed either a positive or negative stress gradient depending on the initial thickness of the polysilicon seed-layer. In addition a high-quality (111) oriented 3C-SiC on (111)Si heteroepitaxial process has been developed and is reported. SiC MEMS structures, both polycrystalline (i.e., poly-3C-SiC) and monocrystalline (i.e., 3C-SiC) were realized using micromachining methods. These structures were used to extract the stress properties of the films, with a particular focus on separating the gradient and uniform stress components.
机译:碳化硅(SiC)是已知最难的材料之一,而且幸运的是,它也是宽带隙半导体。尽管SiC在高温和高功率电子设备中的应用是众所周知的,但其作为微电子机械系统(MEMS)的高强度,化学惰性材料的效用才刚刚开始得到公认。 SiC既可以在本机SiC衬底上也可以在硅上使用异质外延生长方法进行生长,这使得可以使用Si微加工方法来制造先进的SiC MEMS器件。;控制在多晶硅上生长的异质外延碳化硅膜中的膜应力基材已被研究。众所周知,多晶薄膜中晶粒的尺寸和结构在确定薄膜中存在的应力的大小和类型上,即拉伸或压缩应力方面起着重要作用。在LPCVD多晶硅籽晶膜上生长的碳化硅表现出高度纹理化的晶粒结构,并根据多晶硅籽晶层的初始厚度显示正应力或负应力梯度。另外,已经开发并报道了高质量的(111)取向3C-SiC(111)Si异质外延工艺。使用微加工方法实现了多晶(即poly-3C-SiC)和单晶(即3C-SiC)的SiC MEMS结构。这些结构用于提取薄膜的应力特性,特别着重于分离梯度和均匀应力分量。

著录项

  • 作者

    Locke, Christopher.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号