首页> 外文学位 >Improving flavonoid and stilbene titers in recombinant microorganisms using metabolic engineering and directed evolution.
【24h】

Improving flavonoid and stilbene titers in recombinant microorganisms using metabolic engineering and directed evolution.

机译:使用代谢工程和定向进化改善重组微生物中的类黄酮和二苯乙烯浓度。

获取原文
获取原文并翻译 | 示例

摘要

The idea behind this thesis is to remove the bottle-neck in the production of phenylpropanoids-naringinine and resveratrol by using biomolecular engineering.;Biomolecular engineering is very broad and highly interdisciplinary field; it includes, but is not limited to, protein engineering, metabolic engineering, bioinformatics, bioprocessing, gene therapy, drug design, discovery and delivery, biomaterials, and nano-biotechnology1. In particular we used metabolic engineering and protein engineering to improve the titers of flavonoids and stilbenes in bacteria (E.coli) and yeast (Saccharomyces cervisiea).;The precursor to phenylpropanoid pathway; malonyl-CoA is very tightly regulated to very low cellular levels in both E.coli and yeast, we improved its availability by over expressing the gene for acetyl-CoA carboxylase which converts acetyl-CoA to malonyl-CoA in yeast. Acetyl-CoA carboxylase is the first step to fatty acid synthesis, which is the major consumer of malonyl-CoA, so we tried down-regulation of the fatty acid synthesis pathway by using anti-sense RNA technique in the yeast Saccharomyces cerevisiea. S. cerevisiea lacks the RNAi pathway; our technique involved a steric inhibition of the RNA encoding for fatty acid synthase I by expressing approximately 500 base pairs of anti-sense RNA, thus leading to transcriptional inhibition.;Stilbene synthase, the enzyme responsible for the final step in the production of the phenylpropanoid stilbene, upon sequence comparison of the stilbene synthases from different plant species, shows a lot of sequence dissimilarity around the functionally important residues, thus we tried to use the directed evolution technique to evolve a better stilbene synthase.
机译:本文的思想是利用生物分子工程技术消除生产苯丙氨酸类柚皮素和白藜芦醇的瓶颈。生物分子工程技术领域非常广泛,具有很高的跨学科领域。它包括但不限于蛋白质工程,代谢工程,生物信息学,生物加工,基因治疗,药物设计,发现和交付,生物材料和纳米生物技术1。特别是,我们使用代谢工程和蛋白质工程来改善细菌(大肠杆菌)和酵母菌(酿酒酵母)中类黄酮和对苯二酚的效价。丙二酰辅酶A在大肠杆菌和酵母中都被严格地调节到非常低的细胞水平,我们通过过表达乙酰辅酶A羧化酶基因来提高其可用性,该酶将酵母中的乙酰辅酶A转化为丙二酰辅酶A。乙酰辅酶A羧化酶是脂肪酸合成的第一步,它是丙二酰辅酶A的主要消耗者,因此我们尝试通过反义RNA技术在酿酒酵母中下调脂肪酸合成途径。酿酒酵母缺乏RNAi途径;我们的技术涉及通过表达约500个碱基对的反义RNA来对编码脂肪酸合酶I的RNA进行空间抑制,从而导致转录抑制。Stilbene合酶,该酶负责生产苯丙烷类化合物的最后一步通过对来自不同植物物种的二苯乙烯合酶进行序列比较,发现在功能上重要的残基周围存在大量的序列差异,因此我们尝试使用定向进化技术来开发更好的二苯乙烯合酶。

著录项

  • 作者

    Bhan, Namita Jayant.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Chemical.
  • 学位 M.S.
  • 年度 2011
  • 页码 52 p.
  • 总页数 52
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号