首页> 外文学位 >A conventional theory of mechanism-based strain gradient plasticity.
【24h】

A conventional theory of mechanism-based strain gradient plasticity.

机译:基于机理的应变梯度可塑性的传统理论。

获取原文
获取原文并翻译 | 示例

摘要

Experiments have repeatedly shown that metallic materials display strong size effect at the micron and submicron scales when non-uniform plastic deformation exists. These experiments, as well as direct dislocation simulations, therefore, confirmed the existence of a material length scale for plasticity. However, the conventional plasticity theories possess no intrinsic material length and can not explain the above observations, which leading to the considerable recent interest in developing size dependent plasticity theories governing the plastic deformation in small volumes.; It is strongly believed that the size effect is attributed to geometrically necessary dislocations associated with non-uniform plastic deformation. There are, however, many dislocations at the micron scale such that their collective behavior on plastic work hardening of materials should be characterized by a continuum plasticity theory.; We developed a conventional theory of mechanism-based strain gradient plasticity (CMSG) established from Taylor dislocation model but does not involve the higher-order stress. Through several examples of micro-bend, micro-torsion, and void growth, we have shown that CMSG can capture the size effect observed in experiments.; CMSG is used to investigate the stress field around the tip of an interface crack between Nb and sapphire and has shown that the stress at the crack tip is high enough to trigger cleavage cracking in presence of plastic flow in ductile material.; CMSG is also used to study the indentation size effect (ISE) observed in micro and nanoindentation experiments. Different hardness trends with different indenter shapes obtained from CMSG agree very well with the experimental measurement.
机译:实验反复表明,当存在非均匀塑性变形时,金属材料在微米和亚微米尺度上显示出强大的尺寸效应。因此,这些实验以及直接的位错模拟证实了存在可塑性的材料长度尺度。然而,传统的可塑性理论没有内在的材料长度,也不能解释上述观察结果,这引起了人们对发展规模相关的可塑性理论的兴趣,这些理论对小体积的塑性变形具有支配作用。坚信尺寸效应归因于与非均匀塑性变形相关的几何上必要的位错。但是,在微米级存在许多位错,因此它们在材料塑性加工硬化方面的集体行为应以连续可塑性理论为特征。我们开发了一种基于泰勒位错模型建立的基于机理的应变梯度可塑性(CMSG)的常规理论,但不涉及高阶应力。通过微弯曲,微扭转和空隙生长的几个例子,我们表明CMSG可以捕获实验中观察到的尺寸效应。 CMSG用于研究Nb和蓝宝石之间的界面裂纹尖端周围的应力场,并显示出裂纹尖端处的应力足够高,足以在塑性材料中存在塑性流动的情况下触发劈裂裂纹。 CMSG还用于研究在微观和纳米压痕实验中观察到的压痕尺寸效应(ISE)。从CMSG获得的具有不同压头形状的不同硬度趋势与实验测量结果非常吻合。

著录项

  • 作者

    Qu, Shaoxing.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号