首页> 外文学位 >The Energetics of Oxide Multilayer Systems: SOFC Cathode and Electrolyte Materials.
【24h】

The Energetics of Oxide Multilayer Systems: SOFC Cathode and Electrolyte Materials.

机译:氧化物多层系统的能量学:SOFC阴极和电解质材料。

获取原文
获取原文并翻译 | 示例

摘要

Complex oxides are evoking a surge of scientific and technological interest due to the unexpected properties of their interfaces which have been shown to differ from the constituent materials. Layered oxide structures have found wide use in applications ranging from electronic and magnetic devices to solid oxide fuel cells (SOFCs). For devices such as SOFCs which utilize multilayers at elevated temperatures, it is critical to know the relative stabilities of these interfaces since they directly influence the device performance. In this work, we explored the energetics of two oxide multilayer systems which are relevant for SOFCs components using high temperature solution calorimetry and differential scanning calorimetry (DSC). The fundamental understanding of the interfacial and structural properties of multilayers combined with the information about phase stabilities is essential in materials selection for components for intermediate temperature SOFC's.;For cathode materials, we investigated the family of perovskite oxides, La0.7Sr0.3MO3, where M=Mn and Fe, as well as their solid solution phase. Manganites have been the most investigated cathode material, while the ferrites are also being considered for future use due to their thermodynamic stability and close thermal expansion coefficient with the commonly used electrolyte materials. For the bulk La0.7Sr0.3FexMn1-xO 3 solid solution, high temperature oxide melt drop solution calorimetry was performed to determine the enthalpies of formation from binary oxides and the enthalpy of mixing. It was shown that the symmetry of the perovskite structure, the valence of transition metal, and the energetics are highly interdependent and the balance between the different valence states of the Mn and Fe ions is the main factor in determining the energetics. The energetics of interfaces in multilayered structures was investigated by high temperature oxide melt solution calorimetry for the first time. The drop solution calorimetry results of La0.7Sr0.3MnO3(LSMO)/La0.7 Sr0.3FeO3(LSFO) multilayers and LSMO film are highly exothermic and differ from the bulk material with the same composition.;The magnetic and electronic properties of LSMO/LSFO superlattices are highly dependent on the thickness and the structure of the individual layers. Resonant X-Ray reflectivity (XRR) technique was utilized to characterize the structure of the LSMO/LSFO superlattices. It was shown that the XRR spectra taken at the Mn and Fe absorption edges can provide more structural information than the spectra at the X-ray energy of a conventional Cu source. With this non-destructive technique, we demonstrated the ability to compare the intermixing behavior and thickness regularity throughout the thickness of different superlattice structures.;For electrolyte materials, we studied the yttria stabilized zirconia (YSZ) /Al2O3 multilayer system. Differential scanning calorimetry (DSC) was used to study the crystallization of the YSZ layers to explore the effect of the interfaces on phase stabilities. It was observed that the crystallization temperature increased and the enthalpy became more exothermic as the interfacial area increased. This work demonstrated that DSC is a promising technique to study the thin film reactions and explore the interfacial enthalpies in oxide multilayer systems.
机译:复合氧化物由于其界面的出乎意料的性质而引起了科学技术的热潮,这种氧化物已证明与组成材料不同。已发现层状氧化物结构在从电子和磁性设备到固体氧化物燃料电池(SOFC)的应用中得到了广泛的应用。对于在高温下利用多层的SOFC之类的设备,了解这些界面的相对稳定性至关重要,因为它们会直接影响设备性能。在这项工作中,我们使用高温溶液量热法和差示扫描量热法(DSC)探索了与SOFCs组件相关的两种氧化物多层系统的能量学。对于多层材料的界面和结构特性的基本了解以及相稳定性的信息对于中温SOFC组分的材料选择至关重要。对于阴极材料,我们研究了钙钛矿氧化物La0.7Sr0.3MO3族,其中M = Mn和Fe,以及它们的固溶相。锰一直是研究最多的阴极材料,而铁氧体由于其热力学稳定性和与常用电解质材料相近的热膨胀系数,也正在考虑将来使用。对于块状La0.7Sr0.3FexMn1-xO 3固溶体,进行了高温氧化物熔滴溶液量热法,以确定由二元氧化物形成的焓和混合焓。结果表明,钙钛矿结构的对称性,过渡金属的化合价和高能是高度相互依赖的,Mn和Fe离子的不同价态之间的平衡是决定高能的主要因素。首次通过高温氧化物熔融溶液量热法研究了多层结构中的界面能。 La0.7Sr0.3MnO3(LSMO)/La0.7 Sr0.3FeO3(LSFO)多层膜和LSMO膜的滴液量热法是放热性高的结果,与组成相同的块状材料有所不同。 / LSFO超晶格高度依赖于各个层的厚度和结构。共振X射线反射率(XRR)技术用于表征LSMO / LSFO超晶格的结构。结果表明,与常规Cu源的X射线能谱相比,在Mn和Fe吸收边缘处的XRR谱能提供更多的结构信息。通过这种非破坏性技术,我们展示了比较不同超晶格结构整个厚度的混合行为和厚度规则性的能力。差示扫描量热法(DSC)用于研究YSZ层的结晶,以探索界面对相稳定性的影响。观察到,随着界面面积的增加,结晶温度升高并且焓变得更放热。这项工作表明,DSC是研究薄膜反应和探索氧化物多层系统中界面焓的有前途的技术。

著录项

  • 作者

    Kemik, Nihan.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号