首页> 外文学位 >Slow Light, Stopped Light and Guided Light in Hot Rubidium Vapor Using Off-resonant Interactions.
【24h】

Slow Light, Stopped Light and Guided Light in Hot Rubidium Vapor Using Off-resonant Interactions.

机译:使用非共振相互作用在热Rub蒸气中的慢光,停止光和引导光。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents the applications of some of the coherent processes in a three-level atomic system, to control spatial and temporal properties of a signal pulse. We use two Raman absorption resonances in rubidium vapor separated by a few MHz to achieve a rapidly tunable slow-light system. We control the slow-light characteristics all-optically by tuning the frequency and power of a coupling beam. A dual absorption slow-light system is known to cause less pulse broadening than a single transmission resonance system, and thus, a tunable double absorption system is advantageous. We use a four-wave mixing process to demonstrate pulse storage in rubidium vapor for times much greater than the pulse width. We demonstrate storage of both the temporal and spatial profile of the pulse. We overcome the diffusion of spatial information during the storage in warm atomic vapor by storing the Fourier transform of the image instead of an image with a flat phase. The Raman absorption resonance is also used to control the transverse refractive index profile of the signal beam. The refractive index of the signal interacting with a coupling beam in a Raman process is dependent on the coupling beam intensity. We use a first order Laguerre-Gaussian (LG01) coupling beam to create a waveguide like transverse refractive index profile. We demonstrate propagation of a focused signal beam for lengths much greater than the Rayleigh length. Finally, we demonstrate a dual absorption atomic prism, which is capable of spatially separating spectral lines that are 50 MHz apart and which can precisely measure frequency fluctuations. This simple prism is a valuable spectral filtering tool for a variety of atomic experiments.
机译:本文提出了一些相干过程在三能级原子系统中的应用,以控制信号脉冲的时空特性。我们在rub蒸气中相隔几个MHz时使用了两个拉曼吸收共振,以实现快速可调的慢光系统。我们通过调整耦合光束的频率和功率来全光控制慢光特性。已知双吸收慢光系统比单透射共振系统引起更少的脉冲展宽,因此,可调双吸收系统是有利的。我们使用四波混合工艺来证明脉冲在in蒸气中的存储时间远大于脉冲宽度。我们展示了脉冲的时间和空间轮廓的存储。通过存储图像而不是具有平坦相位的图像的傅立叶变换,我们克服了在温暖原子蒸气中存储过程中空间信息的扩散问题。拉曼吸收共振还用于控制信号束的横向折射率分布。在拉曼过程中与耦合束相互作用的信号的折射率取决于耦合束强度。我们使用一阶Laguerre-Gaussian(LG01)耦合光束来创建类似横向折射率分布的波导。我们演示了聚焦信号束的传播,其长度远大于瑞利长度。最后,我们演示了一个双吸收原子棱镜,它能够在空间上分隔相隔50 MHz的谱线,并且可以精确地测量频率波动。这个简单的棱镜是用于各种原子实验的有价值的光谱过滤工具。

著录项

  • 作者

    Vudya Setu, Praveen Kumar.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Physics General.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号