首页> 外文学位 >Automated Quantification of Biological Microstructures Using Unbiased Stereology.
【24h】

Automated Quantification of Biological Microstructures Using Unbiased Stereology.

机译:使用无偏立体学对生物微结构进行自动定量。

获取原文
获取原文并翻译 | 示例

摘要

Research in many fields of life and biomedical sciences depends on the microscopic image analysis of biological images. Quantitative analysis of these images is often time-consuming, tedious, and may be prone to subjective bias from the observer and inter /intra observer variations. Systems for automatic analysis developed in the past decade determine various parameters associated with biological tissue, such as the number of cells, object volume and length of fibers to avoid problems with manual collection of microscopic data. Specifically, automatic analysis of biological microstructures using unbiased stereology, a set of approaches designed to avoid all known sources of systematic error, plays a large and growing role in bioscience research.;Our aim is to develop an algorithm that automates and increases the throughput of a commercially available, computerized stereology device (Stereologer, Stereology Resource Center, Chester, MD). The current method for estimation of first and second order parameters of biological microstructures requires a trained user to manually select biological objects of interest (cells, fibers etc.) while systematically stepping through the three dimensional volume of a stained tissue section. The present research proposes a three-part method to automate the above process: detect the objects, connect the objects through a z-stack of images (images at varying focal planes) to form a 3D object and finally count the 3D objects. The first step involves detection of objects through learned thresholding or automatic thresholding. Learned thresholding identifies the objects of interest by training on images to obtain the threshold range for objects of interest. Automatic thresholding is performed on gray level images converted from RGB (red-green-blue) microscopic images to detect the objects of interest. Both learned and automatic thresholding are followed by iterative thresholding to separate objects that are close to each other. The second step, linking objects through a z-stack of images involves labeling the objects of interest using connected component analysis and then connecting these labeled objects across the stack of images to produce a 3D object. Finally, the number of linked objects in a 3D volume is counted using the counting rules of stereology. This automatic approach achieves an overall object detection rate of 74%. Thus, these results support the view that automatic image analysis combined with unbiased sampling as well as assumption and model-free geometric probes, provides accurate and efficient quantification of biological objects.
机译:生命和生物医学许多领域的研究都依赖于生物图像的微观图像分析。这些图像的定量分析通常是耗时,乏味的,并且可能易于出现来自观察者的主观偏见和观察者之间/观察者内部的变化。过去十年中开发的自动分析系统确定了与生物组织相关的各种参数,例如细胞数量,物体体积和纤维长度,以避免人工收集微观数据带来的问题。具体而言,使用无偏立体学自动分析生物微结构是旨在避免所有已知系统误差的一组方法,在生物科学研究中起着越来越大的作用。一种可商购的计算机化的立体学设备(Stereologer,马里兰州切斯特市立体资源中心)。当前用于估计生物微观结构的一阶和二阶参数的方法需要训练有素的用户手动选择感兴趣的生物对象(细胞,纤维等),同时系统地逐步浏览染色组织切片的三维体积。本研究提出了一种由三部分组成的方法来自动完成上述过程:检测对象,通过图像的z堆栈(位于不同焦平面的图像)连接对象以形成3D对象,最后对3D对象进行计数。第一步涉及通过学习阈值或自动阈值检测对象。学习的阈值通过对图像进行训练来获得感兴趣对象的阈值范围,从而识别出感兴趣对象。对从RGB(红绿蓝)显微图像转换后的灰度图像执行自动阈值处理,以检测感兴趣的对象。学习阈值法和自动阈值法之后都进行迭代阈值法以分离彼此靠近的对象。第二步,通过z图像堆栈链接对象,包括使用连接的组件分析标记感兴趣的对象,然后将这些标记的对象连接到图像堆栈上以生成3D对象。最后,使用立体计数规则对3D体积中链接对象的数量进行计数。这种自动方法实现了74%的整体对象检测率。因此,这些结果支持这样一种观点,即自动图像分析与无偏采样以及假设和无模型的几何探针相结合,可以对生物对象进行准确而有效的定量。

著录项

  • 作者

    Bonam, Om Pavithra.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Computer Science.
  • 学位 M.S.C.S.
  • 年度 2011
  • 页码 68 p.
  • 总页数 68
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号