首页> 外文学位 >Graphene and graphene fluoride: Synthesis, properties and applications.
【24h】

Graphene and graphene fluoride: Synthesis, properties and applications.

机译:石墨烯和氟化石墨烯:合成,性质和应用。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation explores the properties and applications of graphene and graphene fluoride at the junction of physics, material science and electronics. We study the synthesis and characterization of these two novel carbon nanomaterials, and their potential applications in biochemical sensing and optoelectronics.;We start with chemical vapor deposition (CVD) synthesis of large-scale single-layer graphene sheets, followed by material characterization and device fabrication. We demonstrate bio-sensor arrays based on ion-sensitive graphene field-effect transistors (ISGFETs). The ISGFETs are capable of operating in solution environment and show typical carrier mobilities around 5000 cm2/Vs for both electrons and holes. A pulsing gate technique is employed to suppress the hysteresis present in GFETs. Using a SiO2 layer as sensing surface, pH measurement with an average sensitivity of 46 mV/pH is achieved. The pH sensing mechanism of ISGFETs can be explained by a site-dissociation model. We further demonstrate the functionalization of the SiO2 surface with 3- aminopropyltrimethoxysilane (APTMS). Preliminary studies of DNA hybridization show the promise of the ISGFETs as biosensors.;Band gap engineering of graphene is a potential way to extend its applications to optoelectronics. We explore a chemical approach to open a band gap in graphene using fluorination. Thermal fluorination of bulk graphite yields a stoichiometric chemical derivative, (CF)n. Photoluminescence from (CF)n with laser energies up to 5.08 eV is studied at a wide range of temperatures and reveals its six emission modes. The lineshape of these emission modes implies that they are associated with mid-gap states related to defects, possibly fluorine deficient sites. The band gap of (CF)n is likely beyond the highest excitation energy employed, which suggests that it is a wide gap insulator.;Partial fluorination is studied to achieve a reduced band gap. We employ CF4 plasma to treat CVD graphene sheets. The fluorine-containing radicals react with graphene to form CFx (x = 1, 2, 3) functional groups. As plasma time or power increases, CFx shifts to larger x components and eventually turns into CF4 gas molecules. We find that the transport behavior in this regime is dominated by the inhomogeneity of fluorination, which is related with the structural features of CVD graphene, i.e.. multi-layer patches, folds and wrinkles. Tunneling current from fluorinated graphene is shown to decrease drastically as fluorination time increases, which is consistent with the increase of the band gap. We observe that at lower fluorination ratio, the tunneling current can be explained by the Poole-Frenkel mechanism. The results of our studies suggest a way to achieve carbon based two dimensional semiconductors for both fundamental research and applications.
机译:本文探讨了石墨烯和氟化石墨烯在物理,材料科学和电子学交界处的性质和应用。我们研究了这两种新型碳纳米材料的合成,表征及其在生化传感和光电子学中的潜在应用。我们从大规模单层石墨烯片的化学气相沉积(CVD)合成开始,然后进行材料表征和器件制造。我们演示了基于离子敏感的石墨烯场效应晶体管(ISGFET)的生物传感器阵列。 ISGFET能够在解决方案环境中运行,并且对于电子和空穴都表现出大约5000 cm2 / Vs的典型载流子迁移率。采用脉冲栅极技术来抑制GFET中存在的磁滞。使用SiO2层作为传感表面,可实现平均灵敏度为46 mV / pH的pH测量。 ISGFET的pH传感机制可以通过位解离模型来解释。我们进一步证明了使用3-氨丙基三甲氧基硅烷(APTMS)对SiO2表面进行功能化。 DNA杂交的初步研究显示了ISGFET作为生物传感器的前景。石墨烯的带隙工程是将其应用扩展到光电领域的潜在途径。我们探索了一种使用氟化方法在石墨烯中打开带隙的化学方法。块状石墨的热氟化产生化学计量的化学衍生物(CF)n。在很宽的温度范围内研究了(CF)n高达5.08 eV激光能量的光致发光,并揭示了其六种发射模式。这些发射模式的线形意味着它们与与缺陷(可能是氟缺乏的位点)有关的中间能隙状态有关。 (CF)n的带隙可能超过了所采用的最高激发能,这表明它是一个宽间隙绝缘体。;研究了部分氟化作用以减小带隙。我们采用CF4等离子体处理CVD石墨烯片。含氟自由基与石墨烯反应形成CFx(x = 1,2,3)官能团。随着等离子体时间或功率的增加,CFx移至更大的x分量,最终变成CF4气体分子。我们发现在这种情况下的运输行为受氟化的不均匀性支配,这与CVD石墨烯的结构特征,即多层斑块,褶皱和皱纹有关。随着氟化时间的增加,氟化石墨烯的隧穿电流显着降低,这与带隙的增加是一致的。我们观察到在较低的氟化比下,隧穿电流可以用Poole-Frenkel机理来解释。我们的研究结果为基础研究和应用提出了一种实现碳基二维半导体的方法。

著录项

  • 作者

    Wang, Bei.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Physics.;Condensed matter physics.;Materials science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号