首页> 外文学位 >Development of metal-assisted chemical etching of silicon as a 3D nanofabrication platform.
【24h】

Development of metal-assisted chemical etching of silicon as a 3D nanofabrication platform.

机译:作为3D纳米制造平台的硅金属辅助化学蚀刻的开发。

获取原文
获取原文并翻译 | 示例

摘要

The considerable interest in nanomaterials and nanotechnology over the last decade is attributed to Industry's desire for lower cost, more sophisticated devices and the opportunity that nanotechnology presents for scientists to explore the fundamental properties of nature at near atomic levels. In pursuit of these goals, researchers around the world have worked to both perfect existing technologies and also develop new nano-fabrication methods; however, no technique exists that is capable of producing complex, 2D and 3D nano-sized features of arbitrary shape, with smooth walls, and at low cost. This in part is due to two important limitations of current nanofabrication methods. First, 3D geometry is difficult if not impossible to fabricate, often requiring multiple lithography steps that are both expensive and do not scale well to industrial level fabrication requirements. Second, as feature sizes shrink into the nano-domain, it becomes increasingly difficult to accurately maintain those features over large depths and heights. The ability to produce these structures affordably and with high precision is critically important to a number of existing and emerging technologies such as metamaterials, nano-fluidics, nano-imprint lithography, and more.;To overcome these limitations, this study developed a novel and efficient method to etch complex 2D and 3D geometry in silicon with controllable sub-micron to nano-sized features with aspect ratios in excess of 500:1. This study utilized Metal-assisted Chemical Etching (MaCE) of silicon in conjunction with shape-controlled catalysts to fabricate structures such as 3D cycloids, spirals, sloping channels, and out-of-plane rotational structures. This study focused on taking MaCE from a method to fabricate small pores and silicon nanowires using metal catalyst nanoparticles and discontinuous thin films, to a powerful etching technology that utilizes shaped catalysts to fabricate complex, 3D geometry using a single lithography/ etch cycle. The effect of catalyst geometry, etchant composition, and external pinning structures was examined to establish how etching path can be controlled through catalyst shape. The ability to control the rotation angle for out-of-plane rotational structures was established to show a linear dependence on catalyst arm length and an inverse relationship with arm width. A plastic deformation model of these structures established a minimum pressure gradient across the catalyst of 0.4 -- 0.6 MPa. To establish the cause of catalyst motion in MaCE, the pressure gradient data was combined with force-displacement curves and results from specialized EBL patterns to show that DVLO encompassed forces are the most likely cause of catalyst motion. Lastly, MaCE fabricated templates were combined with electroless deposition of Pd to demonstrate the bottom-up filling of MaCE with sub-20 nm feature resolution. These structures were also used to establish the relationship between rotation angle of spiraling star-shaped catalysts and their center core diameter.;In summary, a new method to fabricate 3D nanostructures by top-down etching and bottom-up filling was established along with control over etching path, rotation angle, and etch depth. Out-of-plane rotational catalysts were designed and a new model for catalyst motion proposed. This research is expected to further the advancement of MaCE as platform for 3D nanofabrication with potential applications in thru-silicon-vias, photonics, nanoimprint lithography, and more.
机译:在过去的十年中,对纳米材料和纳米技术的极大兴趣归因于工业对低成本,更先进设备的渴望,以及纳米技术为科学家提供了在接近原子水平上探索自然基本特性的机会。为了实现这些目标,世界各地的研究人员都在努力完善现有技术并开发新的纳米制造方法。但是,没有一种技术能够以低廉的价格生产出具有任意形状,壁面光滑的复杂的2D和3D纳米尺寸特征。这部分是由于当前纳米制造方法的两个重要限制。首先,即使不是不可能制造,3D几何图形也很困难,通常需要多个光刻步骤,这些步骤既昂贵又不能很好地适应工业水平的制造要求。第二,随着特征尺寸缩小到纳米域,在较大的深度和高度上准确地维护这些特征变得越来越困难。对于超材料,纳米流体,纳米压印光刻等许多现有的和新兴的技术,以可承受的价格和高精度生产这些结构的能力至关重要。为克服这些局限性,本研究开发了一种新颖且一种有效的方法,可在硅中蚀刻复杂的2D和3D几何形状,并具有可控制的亚微米到纳米尺寸的特征,长宽比超过500:1。这项研究利用硅的金属辅助化学蚀刻(MaCE)结合形状控制的催化剂来制造诸如3D摆线,螺旋,倾斜通道和平面外旋转结构之类的结构。这项研究的重点是使MaCE从使用金属催化剂纳米颗粒和不连续薄膜制造小孔和硅纳米线的方法,转变为一种强大的蚀刻技术,该技术利用成形的催化剂通过单个光刻/蚀刻循环制造复杂的3D几何形状。检查了催化剂几何形状,蚀刻剂组成和外部钉扎结构的影响,以确定如何通过催化剂形状来控制蚀刻路径。建立了控制平面外旋转结构的旋转角度的能力,以显示出对催化剂臂长的线性依赖性以及与臂宽的反比关系。这些结构的塑性变形模型确定了整个催化剂的最小压力梯度为0.4-0.6 MPa。为了确定MaCE中催化剂运动的原因,将压力梯度数据与力-位移曲线相结合,并通过专门的EBL模式得出结果,表明DVLO所包含的力是催化剂运动的最可能原因。最后,将MaCE制成的模板与Pd的化学沉积相结合,以演示具有20纳米以下特征分辨率的MaCE自下而上的填充。这些结构还被用于建立螺旋形星形催化剂的旋转角度与其中心核直径之间的关系。综上所述,建立了一种通过自上而下的蚀刻和自下而上的填充方法制造3D纳米结构的新方法以及控制方法。蚀刻路径,旋转角度和蚀刻深度。设计了平面外旋转催化剂,并提出了催化剂运动的新模型。这项研究有望进一步推动MaCE作为3D纳米制造平台的发展,并有望在硅通孔,光子学,纳米压印光刻等领域得到潜在应用。

著录项

  • 作者

    Hildreth, Owen James.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 278 p.
  • 总页数 278
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号