首页> 外文学位 >Computational Modeling Studies of Fundamental Aerosol-Cloud Interactions.
【24h】

Computational Modeling Studies of Fundamental Aerosol-Cloud Interactions.

机译:基本气溶胶-云相互作用的计算建模研究。

获取原文
获取原文并翻译 | 示例

摘要

Basic questions regarding the interaction between changes in human activity and the atmosphere remain unanswered. Among these, the link between aerosol particles and cloud formation and development, especially in an altered climate, is a large point of uncertainty in recent climate projections. This should come as no surprise given the uncertainty in model parameters required to predict droplet activation, even in the most detailed models used for climate predictions. Here, a detailed spectral mixed-phase microphysics scheme and a state-of-the-art continuous two-dimensional (2-D) aerosol-droplet microphysics scheme have been developed and coupled to the Weather Research and Forecasting (WRF) model to more closely analyze the effects of aerosol perturbations on single clouds or cloud systems with the hope of ultimately improving numerical parameterizations used by microphysics schemes in general circulation models (GCMs).;The continuous 2-D aerosol-droplet model is developed to explicitly treat the entire spectrum of aerosol, haze droplets, cloud droplets, and drizzle drops while allowing the solute mass spectrum to evolve within the droplets. In other words, the aerosol mass is conserved and regeneration of aerosol particles upon droplet evaporation is physically accurate without any a priori assumptions. The model is tested by performing simulations of marine stratocumulus and the results are compared with those from the aforementioned bin and bulk models. It is shown that microphysical processing of aerosols alone results in a large shift in the aerosol spectrum toward larger particles (via collision-coalescence of droplets). This could have potentially large effects on the activation of regenerated particles. Future studies with the model will address the need for better parameterizations of the aerosol regeneration process.;The spectral mixed-phase microphysics scheme is used in conjunction with a two-moment bulk microphysics model to study the effect of aerosol perturbations on deep convective clouds. The bin model shows that with an increase in aerosol number concentration comes an invigoration and a decrease in precipitation. On the other hand, the bulk model suggests that the storm ought to weaken and precipitation will increase in a more polluted environment. The invigoration predicted by the bin model is a result of the suppression of the collision-coalescence process that permits more droplets to be lofted above the freezing level, hence increasing the bulk freezing rate aloft. The additional freezing and subsequent deposition acts to increase the latent heating and thus increase buoyancy. However, the cloud particles in the polluted cases are now smaller and more numerous and consequently have a shorter evaporation/sublimation timescale and a longer sedimentation time-scale. The ultimate result is for precipitation to decrease in conjunction with a moistening of the mid- to upper-troposphere. The difference in the sign of the aerosol effect between the two models is thought to be related to the saturation adjustment scheme used in the bulk model and is addressed by including an explicit treatment of condensation and activation within the bulk model, similar to the algorithm utilized in the bin model. The results of the inter-model comparison demonstrate the significance of the saturation adjustment assumption on the sign and magnitude of the aerosol effect on deep convective clouds.
机译:关于人类活动变化与大气之间相互作用的基本问题仍未得到解答。其中,气溶胶颗粒与云的形成与发展之间的联系,尤其是在气候变化的情况下,在最近的气候预测中存在很大的不确定性。考虑到预测液滴活化所需要的模型参数的不确定性,即使在用于气候预测的最详细的模型中,其不确定性也就不足为奇了。在这里,已经开发了详细的光谱混合相微物理方案和最先进的连续二维(2-D)气溶胶-液滴微物理方案,并将其与天气研究和预报(WRF)模型耦合在一起密切分析气溶胶扰动对单个云或云系统的影响,以期最终改善通用循环模型(GCM)中微物理方案所使用的数值参数设置。;开发了连续二维气溶胶-液滴模型以明确处理整个过程气溶胶,雾状液滴,云状液滴和毛毛雨液滴的光谱,同时允许溶质质谱在液滴内演化。换句话说,在没有任何先验假设的情况下,气雾剂质量得以保留,并且在液滴蒸发时气雾剂颗粒的再生在物理上是准确的。通过对海洋层积云进行模拟来测试该模型,并将结果与​​上述仓位和散装模型的结果进行比较。结果表明,单独进行气溶胶的微物理处理会导致气溶胶谱向较大颗粒的大偏移(通过液滴的碰撞凝聚)。这可能会对再生颗粒的活化产生巨大影响。该模型的未来研究将满足对气溶胶再生过程进行更好的参数化的需求。光谱混合相微物理方案与两步体微物理模型结合使用,以研究气溶胶扰动对深对流云的影响。 bin模型显示,随着气溶胶浓度的增加,活力增强,降水减少。另一方面,整体模型表明,风暴应该减弱,并且在污染更严重的环境中降水会增加。 bin模型预测的振兴是抑制碰撞聚结过程的结果,碰撞聚结过程使更多的液滴被放高到冻结水平之上,从而提高了总体冻结率。额外的冻结和随后的沉积作用是增加潜热并因此增加浮力。但是,在受污染的情况下,云颗粒现在更小,数量更多,因此蒸发/升华时间尺度更短,沉降时间尺度更长。最终结果是降水减少,同时对流层中上层增湿。两种模型之间气溶胶效应迹象的差异被认为与整体模型中使用的饱和度调节方案有关,并且通过在整体模型中包括对凝结和活化的显式处理来解决,类似于所使用的算法在垃圾箱模型中。模型间比较的结果证明了饱和度调整假设对深对流云的气溶胶效应的符号和大小的重要性。

著录项

  • 作者

    Lebo, Zachary J.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Atmospheric sciences.;Meteorology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号