首页> 外文学位 >Measuring and controlling the transport of magnetic nanoparticles.
【24h】

Measuring and controlling the transport of magnetic nanoparticles.

机译:测量和控制磁性纳米粒子的传输。

获取原文
获取原文并翻译 | 示例

摘要

Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. This thesis further describes development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes.;Measurement of transport of nanometer scale particles through porous media is important to begin to understand the potential environmental impacts of nanomaterials. Using a diffusion cell with two compartments separated by either a porous alumina or polycarbonate membrane as a model system, diffusive flux through mesoporous materials is examined. Experiments are performed as a function of particle size, pore diameter, and solvent, and the particle fluxes are monitored by the change in absorbance of the solution in the receiving cell. Using the measured extinction coefficient and change in absorbance of the solution as a function of time, the fluxes of 3, 8, and 14 nm diameter CoFe2O4 particles are determined as they are translocated across pores with diameters 30, 50, 100, and 200 nm in hexane and aqueous solutions. In general, flux decreases with increasing particle size and increases with pore diameter. We find that fluxes are faster in aqueous solutions than in hexane, which is attributed to the hydrophilic nature of the porous membranes and differences in wettability. The impact of an applied magnetic flux gradient, which induces magnetization and motion, on permeation is also examined.;Surface chemistry plays an important role in determining flux through porous media such as in the environment. Diffusive flux of nanoparticles through alkylsilane modified porous alumina is measured as a model for understanding transport in porous media of differing surface chemistries. Experiments are performed as a function of particle size, pore diameter, attached hydrocarbon chain length and chain terminus, and solvent. Particle fluxes are monitored by the change in absorbance of the solution in the receiving side of a diffusion cell. In general, flux increases when the membranes are modified with alkylsilanes compared to untreated membranes, which is attributed to the hydrophobic nature of the porous membranes and differences in wettability. We find that flux decreases, in both hexane and aqueous solutions, when the hydrocarbon chain lining the interior pore wall increases in length. The rate and selectivity of transport across these membranes is related to the partition coefficient (Kp) and the diffusion coefficient (D) of the permeating species. By conducting experiments as a function of initial particle concentration, we find that KpD increases with increasing particle size, is greater in alkylsilane--modified pores, and larger in hexane solution than water. The impact of the alkylsilane terminus (--CH3, --Br, --NH2, --COOH) on permeation in water is also examined. In water, the highest KpD is observed when the membranes are modified with carboxylic acid terminated silanes and lowest with amine terminated silanes as a result of electrostatic effects during translocation.;Finally, the manipulation of magnetic nanoparticles for the controlled formation of linked nanoparticle assemblies between microfluidic channels by the application of an external magnet is discussed. Two orthogonal channels were prepared using standard PDMS techniques with pressure-driven flow used to deliver the Fe3O4 and Au nanoparticle reactants. Nanoparticle assembly formation is based upon locally confined surface modification of Fe3O4 nanoparticles interacting with Au nanoparticles bridging the two particles together. For the magnetic particles, transfer between flow streams is greatly increased by placing a permanent magnet above and below the channel intersections. Multiple configurations of Fe3O 4 and Au nanoparticle assemblies are observed as a function of flow rate and interaction time of the individual nanoparticle components. We observe the formation of higher order assemblies by increasing the concentration of Fe3O4 nanoparticles introduced to the microfluidic device. This technique demonstrates the ability to form nanoparticle linked assemblies and could be easily linked to other analytical techniques developed in our lab to further isolate and separate a particular product. (Abstract shortened by UMI.).
机译:尽管有大量文献描述了磁性纳米粒子的合成,但很少有分析工具常用于纯化和分析。由于其独特的物理和化学特性,磁性纳米粒子是生物医学应用和分析分离的理想之选。然而,在缺乏评估和确保其纯度的方法的情况下,磁性颗粒和异质结构的最终用途可能会受到限制。对于磁性纳米粒子,使用施加的磁通量或场梯度可以实现分离。基于流的技术与施加的磁场相结合,以提供诸如磁场流分离和高梯度磁分离之类的方法。已经研究了用于处理微流体通道和中孔膜中颗粒的其他技术。本论文进一步描述了这些和新的分析工具的发展,这些工具用于分离和分析胶体颗粒对于使它们的实际应用,特别是用于医学目的至关重要。;开始测量纳米级颗粒通过多孔介质的运输非常重要了解纳米材料的潜在环境影响。使用具有两个隔室的扩散池作为模型系统,该扩散池具有被多孔氧化铝或聚碳酸酯膜隔开的两个隔室,检查通过中孔材料的扩散通量。根据粒径,孔径和溶剂的变化进行实验,并通过接收池中溶液吸光度的变化监控颗粒通量。使用测得的消光系数和溶液吸光度随时间的变化,确定直径为3、8和14 nm的CoFe2O4粒子的通量,因为它们穿过直径为30、50、100和200 nm的孔在己烷和水溶液中。通常,通量随着粒径的增加而降低,并随着孔径的增加而增加。我们发现,水溶液中的通量比己烷中的通量快,这归因于多孔膜的亲水性和润湿性的差异。还检查了施加的磁通量梯度(它会引起磁化和运动)对渗透的影响。表面化学在确定通过多孔介质(例如环境)的通量中起着重要作用。测量纳米颗粒通过烷基硅烷改性的多孔氧化铝的扩散通量,作为理解不同表面化学的多孔介质中迁移的模型。根据颗粒大小,孔径,附着的烃链长度和链末端以及溶剂来进行实验。通过扩散池接收侧溶液吸收率的变化来监控颗粒通量。通常,与未经处理的膜相比,当用烷基硅烷改性膜时通量增加,这归因于多孔膜的疏水性和润湿性的差异。我们发现,当内孔壁衬里的烃链长度增加时,在己烷和水溶液中通量都会减少。跨这些膜的传输速率和选择性与渗透物质的分配系数(Kp)和扩散系数(D)有关。通过根据初始颗粒浓度进行实验,我们发现KpD随粒径增加而增加,在烷基硅烷修饰的孔中更大,在己烷溶液中比水更大。还检查了烷基硅烷末端(-CH3,-Br,-NH2,-COOH)对水中渗透的影响。在水中,由于易位过程中的静电作用,当膜用羧酸封端的硅烷改性时观察到最高的KpD,而用胺封端的硅烷改性时观察到的最低KpD。最后,操纵磁性纳米粒子以控制两分子之间连接纳米粒子组装体的形成讨论了通过应用外部磁体的微流体通道。使用标准的PDMS技术制备了两个正交通道,其中压力驱动的流量用于输送Fe3O4和Au纳米颗粒反应物。纳米粒子组件的形成基于Fe3O4纳米粒子与Au纳米粒子相互作用的局部受限表面改性,将两个粒子桥接在一起。对于磁性粒子通过在通道交叉点的上方和下方放置永久磁铁,可大大增加流之间的传递。观察到Fe3O 4和Au纳米粒子组件的多种构型是各个纳米粒子组分的流速和相互作用时间的函数。我们观察到通过增加引入微流控装置的Fe3O4纳米粒子的浓度来形成更高阶的组件。该技术证明了形成纳米颗粒连接组件的能力,并且可以很容易地与我们实验室开发的其他分析技术相链接,以进一步分离和分离特定产品。 (摘要由UMI缩短。)。

著录项

  • 作者

    Stephens, Jason R.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Analytical chemistry.;Nanotechnology.;Environmental science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号