首页> 外文学位 >Balance Between Plant Growth and Defense: Transcriptional and Translational Control of Plant Immune System.
【24h】

Balance Between Plant Growth and Defense: Transcriptional and Translational Control of Plant Immune System.

机译:植物生长与防御之间的平衡:植物免疫系统的转录和翻译控制。

获取原文
获取原文并翻译 | 示例

摘要

The activation and maintenance of plant immune responses require a significant amount of energy because they are accompanied by massive transcriptional reprogramming. Spurious activation of plant defense machinery can lead to autoimmune diseases and growth inhibition. So it is important for plants to tightly regulate the immune system to ensure the balance between growth and defense. However, neither the molecular mechanisms nor the design principles of how plants reach this balance are understood.;In this dissertation work, I showed how transcriptional and translational control of plant immune system can help avoid the constant immune surveillance and elicit a proper level of defense responses when necessary. These fine tunings of the immune system ensure the balance between growth and defense.;My research on the transcriptional regulation of plant defense responses led to the surprising discovery that even without pathogen, plant can 'anticipate' potential infection according to a circadian schedule under conditions that favor the initiation of infection. Functional analysis of 22 novel immune components unveiled their transient expression at dawn, when the infection is most likely to happen. This pulse expression pattern was shown to be regulated by the central circadian oscillator, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) since these 22 genes are no longer induced in the cca1 mutant. Moreover, the temporal control of the transcription level of these 22 immune genes by CCA1 also fine tunes their expression pattern according to the perceptions of different pathogenic signals. At the basal defense level, the expression of these genes can be transiently induced upon perceptions of critical infection stages of the pathogen. When an elevated level of defense response is needed, the high expression levels of these genes are maintained to confer a stronger immunity against pathogen. Since this stronger form of defense may also cause the suicidal death of the plant cells, the interplay between the circadian clock and defense allows a better decision on the proper level of the immunity to minimize the sacrificial death. The circadian clock is also known to regulate the growth-related cellular functions extensively. So the circadian clock can help to balance the energy used in growth and defense through transcriptional regulation on both sides.;Besides the integrated control by the circadian clock, the translational control on a key transcription factor involved in the growth-to-defense transition can also maintain the balance between growth and defense. TBF1 is a major transcription factor that can initiate the growth-to-defense transition through transcriptional repression of growth-associated cellular functions and induction of defense-related machinery. Bioinformatics studies identified 2 upstream open reading frames (uORFs) encoding multiple phenylalanine at 5' of the translation initiation codon of TBF1. Under normal conditions, these 2 uORFs can repress the translation of TBF1 to prevent accidental activation. However, pathogen infection may cause rapid and transient depletion of phenylalanine, a well-known precursor for cell wall components and the SAR signal SA. This depletion signal can be reflected by the increase of uncharged tRNAPhe, which subsequently leads to the phosphorylation of eIF2alpha and the release of uORFs' repression on TBF1. These findings provided the molecular details of how uORF-based translational control can couple transcriptional reprogramming with metabolic status to coordinately trigger the growth-to-defense transition.;In summary, my dissertation work has identified previously unrecognized regulatory mechanisms by which plant immune responses are balanced with growth. These new findings will further investigations into these novel interfaces between plants and pathogens. Future studies will definitely further improve our understandings of the plant-microbe interactions.
机译:植物免疫应答的激活和维持需要大量能量,因为它们伴随着大量的转录重编程。虚假激活植物防御机制会导致自身免疫性疾病和生长抑制。因此,对植物严格调节免疫系统以确保生长与防御之间的平衡非常重要。然而,对于植物如何达到这种平衡的分子机制和设计原理都没有被理解。;在本文中,我展示了植物免疫系统的转录和翻译控制如何能够帮助避免持续的免疫监视并引发适当的防御水平必要时做出回应。免疫系统的这些微调确保了生长与防御之间的平衡。我对植物防御反应的转录调控的研究得出了令人惊讶的发现,即使没有病原体,植物也可以在一定条件下根据昼夜节律“预测”潜在的感染有利于感染的开始。对22种新型免疫成分的功能分析在黎明时最容易发生感染时揭示了它们的瞬时表达。该脉冲表达模式已显示受中央昼夜节律振荡器CIRCADIAN CLOCK ASSOCIATED 1(CCA1)调节,因为这22个基因不再在cca1突变体中被诱导。此外,CCA1对这22个免疫基因的转录水平的时间控制还根据对不同病原体信号的感知来微调它们的表达模式。在基础防御水平上,一旦感知到病原体的关键感染阶段,就可以瞬时诱导这些基因的表达。当需要升高水平的防御反应时,这些基因的高表达水平得以维持以赋予对病原体的更强免疫力。由于这种较强的防御方式也可能导致植物细胞自杀死亡,因此生物钟和防御之间的相互作用可以更好地决定免疫力的适当水平,从而最大程度地减少牺牲性死亡。还已知昼夜节律时钟广泛地调节与生长有关的细胞功能。因此,昼夜节律时钟可以通过双方的转录调控来帮助平衡生长和防御中使用的能量。除了昼夜节律时钟的综合控制外,对涉及到生长防御过程的关键转录因子的翻译控制可以还保持增长与防御之间的平衡。 TBF1是主要的转录因子,可以通过转录抑制与生长相关的细胞功能和诱导防御相关机制来启动从生长到防御的过渡。生物信息学研究确定了2个上游开放阅读框(uORF),它们在TBF1的翻译起始密码子的5'端编码多个苯丙氨酸。在正常情况下,这两个uORF可以抑制TBF1的翻译,以防止意外激活。但是,病原体感染可能会导致苯丙氨酸迅速而短暂地耗尽,苯丙氨酸是细胞壁成分和SAR信号SA的众所周知的前体。该耗尽信号可以通过不带电荷的tRNAPhe的增加来反映,其随后导致eIF2alpha的磷酸化和uORF对TBF1的抑制的释放。这些发现提供了基于uORF的翻译控制如何将转录重编程与代谢状态结合起来以协调地触发从生长到防御转变的分子细节。总之,我的论文工作确定了以前无法识别的调节机制,通过该机制可以免疫植物免疫。与增长保持平衡。这些新发现将进一步研究植物与病原体之间的这些新界面。未来的研究肯定会进一步提高我们对植物-微生物相互作用的理解。

著录项

  • 作者

    Wang, Wei.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Plant pathology.;Botany.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号