首页> 外文学位 >Protein interactions in solution: Implications for protein aggregation and separation.
【24h】

Protein interactions in solution: Implications for protein aggregation and separation.

机译:溶液中的蛋白质相互作用:对蛋白质聚集和分离的影响。

获取原文
获取原文并翻译 | 示例

摘要

Protein aggregation is ubiquitous in production and formulation of therapeutic proteins and is the probable cause of a number of neurodegenerative diseases. Protein intermolecular attractions are responsible for protein self-assembly and protein aggregation. Protein intermolecular interactions can be controlled by solution conditions during protein separation processes such as precipitation and crystallization. A more complete understanding of protein intermolecular forces will help to elucidate the mechanism of protein aggregation; it will also contribute toward establishing rational design criteria for selecting suitable solution conditions during recombinant protein production.; In this work, we have studied the mechanism of protein aggregation and protein interactions under conditions corresponding to protein-production processes. Aggregated proteins have structures that vary from amorphous to highly ordered beta-sheet aggregates. One of the most important examples of a highly ordered aggregate is the insoluble amyloid fibril that has been found to be associated with several neurodegenerative diseases. In Chapter 2, we have been able to convert a polypeptide derived from the beta-sheet region of T4 lysozyme into amyloid fibrils. Peptide fibril formation is facilitated by a moderate content of alpha-helix in the initial peptide solution. A stable alpha-helix inhibits fibril formation. These results support the view that amyloid fibrillogenesis is a common generic property of all proteins and polypeptides.; Molecular chaperones can prevent cellular protein misfolding and aggregation by temporarily binding to newly synthesized polypeptides or unfolded proteins. DnaK is the Hsp70 (70 kDa heat-shock protein) molecular chaperone of Escherichia coli. It binds preferably with a peptide that consists of a hydrophobic core and flanking regions enriched in basic residues. In Chapter 3, we have delineated the electrostatic contributions to the binding free energy between molecular chaperones and peptides. We have also developed an approximate analytic model for prediction of the electrostatic contribution to the potential of mean force for a pair of dissimilar dipolar particles. The calculated electrostatic free energy of binding shows reasonable agreement with that obtained from fluorescence-anisotropy measurements.; Many protein separation processes, including protein precipitation and crystallization, are intimately related to control of protein-protein interactions. The strength of a protein-protein interaction can be described by the osmotic second virial coefficient, B22. Solvents used in protein precipitation and crystallization are often aqueous mixtures of buffer salts with organic solvents such as polymers, alcohols and polyols. In Chapter 4, we have measured B22 of hen-egg lysozyme in salt solution with several alcohol additives. All the alcohols used in this study raise the second virial coefficient, indicating stronger protein-protein repulsion. We describe the alcohol effect using a potential of mean force (PMF) model that supplements the DLVO theory with an additional alcohol-dependent term representing orientation-averaged hydrophobic interactions.; In Chapter 5, we have measured B22 for partially unfolded lysozyme in the presence of GdnHCl at several concentrations. Lysozyme inter-particle interactions are least repulsive and hydrodynamic interactions are least attractive at intermediate (1∼2M) GdnHCl concentrations.; The work described in this thesis has improved our understanding of interactions between protein molecules. Such understanding is of vital importance in understanding protein function in nature and in protein processing biotechnology.
机译:蛋白质聚集在治疗性蛋白质的生产和配制中无处不在,并且是许多神经退行性疾病的可能原因。蛋白质分子间的吸引力负责蛋白质的自组装和蛋白质聚集。蛋白质分子间的相互作用可以通过蛋白质分离过程(例如沉淀和结晶)中的溶液条件来控制。对蛋白质分子间作用力的更完整理解将有助于阐明蛋白质聚集的机制。它还将有助于建立合理的设计标准,以在重组蛋白生产过程中选择合适的溶液条件。在这项工作中,我们研究了在与蛋白质生产过程相对应的条件下蛋白质聚集和蛋白质相互作用的机制。聚集的蛋白质具有从无定形到高度有序的β-折叠聚集体的结构。高度有序的聚集体的最重要例子之一是已发现与几种神经退行性疾病有关的不溶性淀粉样原纤维。在第2章中,我们已经能够将源自T4溶菌酶的β-折叠区域的多肽转化为淀粉样蛋白原纤维。初始肽溶液中中等含量的α-螺旋促进了肽原纤维的形成。稳定的α-螺旋抑制原纤维形成。这些结果支持以下观点:淀粉样原纤维形成是所有蛋白质和多肽的共同通用特性。分子伴侣可以通过暂时结合新合成的多肽或未折叠的蛋白质来防止细胞蛋白质的错误折叠和聚集。 DnaK是大肠杆菌的Hsp70(70 kDa热休克蛋白)分子伴侣。它优选与由疏水核心和富含碱性残基的侧翼区域组成的肽结合。在第三章中,我们描述了静电对分子伴侣和肽之间结合自由能的贡献。我们还开发了一种近似分析模型,用于预测静电对一对异质偶极粒子对平均力的影响。所计算的结合的静电自由能与从荧光各向异性测量获得的静电自由能显示出合理的一致性。许多蛋白质分离过程,包括蛋白质沉淀和结晶,都与蛋白质-蛋白质相互作用的控制密切相关。蛋白质与蛋白质相互作用的强度可以通过渗透第二病毒系数B22来描述。用于蛋白质沉淀和结晶的溶剂通常是缓冲盐与有机溶剂(例如聚合物,醇和多元醇)的水性混合物。在第4章中,我们用几种酒精添加剂测量了盐溶液中的鸡蛋鸡蛋溶菌酶的B22。本研究中使用的所有酒精均提高了第二病毒系数,表明较强的蛋白质-蛋白质排斥力。我们用平均力势(PMF)模型描述酒精效应,该模型用代表方向平均疏水相互作用的附加酒精依赖性术语补充了DLVO理论。在第5章中,我们测量了在几种浓度的GdnHCl存在下B22的部分展开的溶菌酶。在中等(1-2M)GdnHCl浓度下,溶菌酶颗粒间的相互作用排斥力最小,而流体力学的相互作用则吸引力最小。本文所描述的工作增进了我们对蛋白质分子之间相互作用的理解。这种理解对于理解自然界中的蛋白质功能和蛋白质加工生物技术至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号