首页> 外文学位 >Characterizing the correlation between motor cortical neural firing and grasping kinematics.
【24h】

Characterizing the correlation between motor cortical neural firing and grasping kinematics.

机译:表征运动皮层神经激发与运动学之间的相关性。

获取原文
获取原文并翻译 | 示例

摘要

The hand has evolved to allow specialized interactions with our surroundings that define much of what makes us human. Comprised of numerous joints allowing 23 separate degrees-of-freedom (DoFs) (joint motions) of movement, the hand and wrist are exceedingly complex. In order to better understand the constraints and principles underlying the neural control of the hand, we have carried out a series of neurophysiological experiments with monkeys performing a variety of reaching and grasping tasks. This work uses linear regression and low dimensional analysis to probe the neural representation of hand kinematics.;We find that the kinematics of the three wrist DoFs (flexion, abduction and rotation) are rashly independent from hand-shape DoFs, and are considered separately. With respect to the wrist DoFs, we show that the firing patterns of individual motor cortical cells are more linearly related to joint position than joint angular velocity. Using tuning functions from multivariate linear regressions, the firing rates from a population of cells accurately predicted three DoFs of wrist orientation. We used principal components analysis to simplify the complex kinematics of the hand. Although the majority of the variability in hand kinematics can be explained with a small number (∼7) of characteristic hand shapes (synergies), we find that these synergies do not capture the majority of neural variability. Both higher-order and lower-order synergies are well represented in the neural data. Although the kinematic synergies do not fully characterize neural firing, they can be utilized to simplify hand shape decoding. Using an optimal linear estimator, we predicted the average wrist and hand shape from the firing rates of 327 motor cortical cells with an accuracy as high as 92%.;Individual motor cortical neurons are not well correlated with single joint variables; rather, they correlate with a number of joints in a complex way. This work provides evidence that hand movements are likely controlled through an intricate network of motor systems, of which motor cortical neurons contribute by making fine adjustments to a basic substrate. Further understanding of the control system will be gained by establishing a model that captures both the hand kinematic and neural variability.
机译:手已进化为可以与周围环境进行专门的交互,从而定义了许多使我们成为人类的东西。由众多的关节组成,可进行23种独立的自由度(DoF)(关节运动)运动,手和腕部极为复杂。为了更好地理解手部神经控制的约束条件和原理,我们进行了一系列神经生理学实验,猴子执行了各种伸手和抓握任务。这项工作使用线性回归和低维分析来探究手运动学的神经表示。;我们发现,三个腕部自由度的运动学(屈曲,外展和旋转)与手形自由度无关紧要,因此被单独考虑。关于腕部自由度,我们表明单个运动皮层细胞的发射模式与关节位置比关节角速度更线性相关。使用多元线性回归的调整函数,从一组细胞中发射的速率可以准确预测手腕方向的三个自由度。我们使用主成分分析来简化手的复杂运动学。尽管手运动学的大多数可变性可以用少量(〜7个)特征手形(协同作用)来解释,但我们发现这些协同作用并未捕获到大多数神经变异性。神经数据很好地表示了高阶和低阶协同。尽管运动学协同作用不能完全表征神经激发,但可以利用它们来简化手形解码。使用最佳线性估计量,我们从327个运动皮层细胞的发射率预测了平均手腕和手的形状,其准确率高达92%。相反,它们以复杂的方式与多个关节关联。这项工作提供了证据,表明手的运动很可能是通过复杂的运动系统网络来控制的,其中运动皮层神经元通过对基本基质进行微调来做出贡献。通过建立一个捕捉手运动学和神经变异性的模型,可以进一步了解控制系统。

著录项

  • 作者

    Spalding, M. Chance.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Biology Neuroscience.;Engineering Biomedical.;Biology Neurobiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号