首页> 外文学位 >Inferential modeling and independent component analysis for redundant sensor validation.
【24h】

Inferential modeling and independent component analysis for redundant sensor validation.

机译:推理建模和独立组件分析,用于冗余传感器验证。

获取原文
获取原文并翻译 | 示例

摘要

The calibration of redundant safety critical sensors in nuclear power plants is a manual task that consumes valuable time and resources. Automated, data-driven techniques, to monitor the calibration of redundant sensors have been developed over the last two decades, but have not been fully implemented. Parity space methods such as the Instrumentation and Calibration Monitoring Program (ICMP) method developed by Electric Power Research Institute and other empirical based inferential modeling techniques have been developed but have not become viable options.; Existing solutions to the redundant sensor validation problem have several major flaws that restrict their applications. Parity space method, such as ICMP, are not robust for low redundancy conditions and their operation becomes invalid when there are only two redundant sensors. Empirical based inferential modeling is only valid when intrinsic correlations between predictor variables and response variables remain static during the model training and testing phase. They also commonly produce high variance results and are not the optimal solution to the problem.; This dissertation develops and implements independent component analysis (ICA) for redundant sensor validation. Performance of the ICA algorithm produces sufficiently low residual variance parameter estimates when compared to simple averaging, ICMP, and principal component regression (PCR) techniques. For stationary signals, it can detect and isolate sensor drifts for as few as two redundant sensors. It is fast and can be embedded into a real-time system. This is demonstrated on a water level control system.; Additionally, ICA has been merged with inferential modeling technique such as PCR to reduce the prediction error and spillover effects from data anomalies. ICA is easy to use with, only the window size needing specification.; The effectiveness and robustness of the ICA technique is shown through the use of actual nuclear power plant data. A bootstrap technique is used to estimate the prediction uncertainties and validate its usefulness. Bootstrap uncertainty estimates incorporate uncertainties from both data and the model. Thus, the uncertainty estimation is robust and varies from data set to data set.; The ICA based system is proven to be accurate and robust; however, classical ICA algorithms commonly fail when distributions are multi-modal. This most likely occurs during highly non-stationary transients. This research also developed a unity check technique which indicates such failures and applies other, more robust techniques during transients. For linear trending signals, a rotation transform is found useful while standard averaging techniques are used during general transients.
机译:核电厂中冗余安全关键传感器的校准是一项手动任务,这会浪费宝贵的时间和资源。在过去的二十年中,已经开发出了自动的,数据驱动的技术来监视冗余传感器的校准,但是尚未完全实现。已经开发了奇偶空间方法,例如电力研究所开发的仪器和校准监视程序(ICMP)方法以及其他基于经验的推理建模技术,但这些方法并不是可行的选择。冗余传感器验证问题的现有解决方案存在几个主要缺陷,这些缺陷限制了它们的应用。奇偶校验空间方法(例如ICMP)在低冗余条件下不可靠,当只有两个冗余传感器时,它们的操作将无效。仅当在模型训练和测试阶段预测变量和响应变量之间的内在相关性保持静态时,基于经验的推理模型才有效。它们通常还会产生高方差结果,而不是问题的最佳解决方案。本文针对冗余传感器的验证开发并实现了独立分量分析(ICA)。与简单平均,ICMP和主成分回归(PCR)技术相比,ICA算法的性能可产生足够低的残差方差参数估计值。对于固定信号,它可以检测和隔离多达两个冗余传感器的传感器漂移。它速度快,可以嵌入到实时系统中。这在水位控制系统上得到了证明。此外,ICA已与推理建模技术(例如PCR)合并,以减少预测误差和数据异常带来的溢出效应。 ICA易于使用,仅需指定窗口大小。 ICA技术的有效性和鲁棒性通过实际核电厂数据的使用来显示。自举技术用于估计预测不确定性并验证其有效性。引导不确定性估计会合并来自数据和模型的不确定性。因此,不确定性估计是可靠的,并且随数据集的不同而变化。事实证明,基于ICA的系统是准确且强大的;但是,传统的ICA算法通常在多模式分布时失败。这种情况最有可能发生在高度不稳定的瞬变期间。这项研究还开发了一种统一检查技术,该技术可指示此类故障并在瞬态过程中应用其他更可靠的技术。对于线性趋势信号,发现旋转变换很有用,而在一般瞬态过程中使用标准平均技术。

著录项

  • 作者

    Ding, Jun.;

  • 作者单位

    The University of Tennessee.;

  • 授予单位 The University of Tennessee.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子能技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号