首页> 外文学位 >Simulation, Design and Construction of a Gas Electron Multiplier for Particle Tracking.
【24h】

Simulation, Design and Construction of a Gas Electron Multiplier for Particle Tracking.

机译:用于粒子跟踪的气体电子倍增器的仿真,设计和构造。

获取原文
获取原文并翻译 | 示例

摘要

The biological effects of charged particles is of interest in particle therapy, radiation protection and space radiation science and known to be dependent on both absorbed dose and radiation quality or LET. Microdosimetry is a technique which uses a tissue equivalent gas to simulate microscopic tissue sites of the order of cellular dimensions and the principles of gas ionization devices to measure deposited energy. The Gas Electron Multiplier (GEM) has been used since 1997 for tracking particles and for the determination of particle energy. In general, the GEM detector works in either tracking or energy deposition mode. The instrument proposed here is a combination of both, for the purpose of determining the energy deposition in simulated microscopic sites over the charged particle range and in particular at the end of the range where local energy deposition increases in the so-called Bragg-peak region. The detector is designed to track particles of various energies for 5 cm in one dimension, while providing the particle energy deposition every 0.5 cm of its track. The reconfiguration of the detector for different particle energies is very simple and achieved by adjusting the pressure of the gas inside the detector and resistor chain. In this manner, the detector can be used to study various ion beams and their dose distributions to tissues. Initial work is being carried out using an isotopic source of alpha particles and this thesis will describe the construction of the GEM-based detector, computer modelling of the expected gas-gain and performance of the device as well as comparisons with experimentally measured data of segmented energy deposition.
机译:带电粒子的生物学效应在粒子疗法,辐射防护和空间辐射科学中令人关注,并且已知既取决于吸收剂量又取决于辐射质量或LET。微剂量法是一种使用组织当量气体来模拟细胞大小数量级的微观组织部位以及气体电离装置原理来测量沉积能量的技术。气体电子倍增器(GEM)自1997年以来一直用于跟踪粒子和确定粒子能量。通常,GEM检测器以跟踪或能量沉积模式工作。此处提出的仪器是两者的组合,目的是确定在带电粒子范围内,尤其是在所谓的布拉格峰区域中局部能量沉积增加的范围的末端,在模拟微观位置的能量沉积。该探测器的设计目的是在一维中跟踪5 cm的各种能量的粒子,同时每0.5 cm的轨迹提供一次粒子能量的沉积。对于不同的粒子能量,检测器的重新配置非常简单,可以通过调整检测器和电阻器链内部的气体压力来实现。以这种方式,检测器可用于研究各种离子束及其在组织中的剂量分布。初步工作是使用α粒子的同位素源进行的,本论文将描述基于GEM的探测器的构造,预期气体增益和设备性能的计算机模型,以及与分段实验测量数据的比较能量沉积。

著录项

  • 作者

    Sipaj, Andrej.;

  • 作者单位

    University of Ontario Institute of Technology (Canada).;

  • 授予单位 University of Ontario Institute of Technology (Canada).;
  • 学科 Engineering Nuclear.
  • 学位 M.A.S.
  • 年度 2012
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号