首页> 外文学位 >Numerical and experimental investigations on unsteady aerodynamics of flapping wings.
【24h】

Numerical and experimental investigations on unsteady aerodynamics of flapping wings.

机译:襟翼非定常空气动力学的数值和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow.;Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle.;As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils.;As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle.;In order to provide constructive suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.
机译:在这项工作中,针对三维可压缩Navier-Stokes(N-S)方程开发了动态非结构化网格高阶精确谱差(SD)方法,并将其应用于襟翼空气动力学中。网格变形是通过代数混合策略实现的,从而节省了计算成本。实行几何守恒定律(GCL)是为了确保网格变形不会污染流动物理场。在开发的求解器中进行了低马赫数的预处理程序,以处理生物启发流。低马赫数预处理SD解算器的功能通过非定常涡旋主导流动的一系列二维(2D)和三维(3D)模拟得到证明;在此方面,对襟翼空气动力学的几个主题进行了数值和实验研究工作。这些主题涵盖了襟翼空气动力学的一些前沿问题,包括尾流结构分析,机翼厚度和运动学对空气动力学性能的影响,围绕3D襟翼的涡旋结构分析以及运动学优化。用实验和数值方法研究了正弦俯仰NACA0012机翼后面的尾迹结构。实验是用粒子图像测速(PIV)进行的,并区分了两种类型的尾流过渡过程,即从阻力指示尾流到推力指示尾流以及从对称尾流到非对称尾流的过渡。所开发的SD解算器的数值结果与实验结果非常吻合。从数值上发现,不对称尾流的偏转方向是由初始条件确定的。由于大多数昆虫在拍打过程中使用较薄的机翼(即机翼厚度仅是弦长的百分之几),因此通过模拟一系列翼型周围的流场来数值研究机翼厚度对推力产生的影响。插入NACA对称翼型,厚度比为翼型弦长的4.0%至20.0%。研究了粘性力对襟翼推进的贡献,发现粘性力变为推力产生而不是阻力产生,并且在薄翼型的推力产生中起不可忽略的作用。这与翼型周围不稳定涡流结构的动力学变化密切相关。;由于自然飞行者在扑翼飞行中使用复杂的机翼运动学特性,因此通过一系列的数值研究了运动学对不同翼型厚度对空气动力性能的影响。 NACA对称机翼。发现通过在振荡冲程期间精细地调节翼型手势,插入和俯仰运动的组合可以胜过纯插入或俯仰运动。在研究案例中,薄翼型比厚翼型(NACA0030)更好地操纵前缘涡流(LEVs),并且对于产生大推力并具有合理的推进效率,存在最佳厚度。利用当前的运动学和动力学参数,相对较低的降低频率有利于所有测试翼型厚度的推力产生和推进效率。为了获得扑翼飞行的最佳运动学参数,然后进行运动学优化。基于梯度的优化算法与二阶SD Navier-Stokes求解器结合使用,以搜索经历了组合的俯冲和俯仰运动的某些机翼的最佳运动学。然后,采用高阶SD方案来验证优化结果并揭示与扑翼飞行的最佳运动学相关的详细旋涡结构。发现对于具有最大推进效率的情况,在大多数振荡周期中不存在前沿分离。;;为了为微型飞行器(MAV)的设计提供建设性的建议,扑翼的3D模拟机翼在这项工作中进行。研究了具有不同运动学特性的矩形和生物启发式机翼。发现有限跨度扑翼后面的两股喷射状尾流模式的形成过程与后缘涡旋和尖端涡旋之间的相互作用密切相关。然后,根据非定常涡旋结构的演化和动力相互作用,阐明了机翼平面形式对有限跨度扑翼的空气动力学性能的影响。

著录项

  • 作者

    Yu, Meilin.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号