首页> 外文学位 >Low density parity check lattices.
【24h】

Low density parity check lattices.

机译:低密度奇偶校验格子。

获取原文
获取原文并翻译 | 示例

摘要

Low density parity check codes can have a remarkable performance under iterative decoding algorithms. This idea is used to construct a class of lattices with relatively high coding gain and low decoding complexity.; The lattice construction is based on the so-called Construction D'. This lattice construction converts a set of parity checks defining a family of nested low density parity check codes into congruences for a lattice called a low density parity check lattice (LDPC lattice, for short). Bounds on the minimum distance and coding gain of the corresponding lattice in terms of the minimum distance of the underlying codes are provided. Given a parity check matrix of a lattice, a practical way of finding the lattice parameters such as cross sections and label group sizes is given.; A new approach based on iterative decoding of lattices is taken. For the decoding of a low density parity check lattice, the Min-Sum algorithm is generalized to group codes over different alphabet sizes and is applied to the Tanner graph of the lattice. An upper bound on the decoding complexity using the generalized Min-Sum algorithm is given. Also for the decoding complexity of LDPC lattices the exact number of computations among lower and upper bounds is derived. The analysis of decoding complexity confirms the use of LDPC codes for the lattice construction. It is shown that the decoding complexity grows linearly with the dimension, exponentially with row weights and is polynomial time in terms of coding gain of the lattice.; The progressive edge growth algorithm is extended to what we call the E-PEG algorithm. This algorithm is used to construct a class of nested regular binary codes to generate the corresponding lattice. A class of 2-level lattices is constructed. The performance of this class is compared with the corresponding 1-level construction and other well known constructions.
机译:在迭代解码算法下,低密度奇偶校验码可以具有出色的性能。这个想法被用来构造一类具有相对较高的编码增益和较低的解码复杂度的晶格。晶格构造基于所谓的构造D'。这种格结构将一组定义一组嵌套的低密度奇偶校验码的奇偶校验转换为称为低密度奇偶校验格(简称LDPC格)的格的全等。提供了根据基础代码的最小距离的相应格的最小距离和编码增益的界限。给定晶格的奇偶校验矩阵,给出了找到晶格参数(如横截面和标签组大小)的实用方法。采取了一种基于晶格迭代解码的新方法。对于低密度奇偶校验格子的解码,将Min-Sum算法概括为对不同字母大小的代码进行分组,并将其应用于格子的Tanner图。给出了使用广义最小和算法的解码复杂度的上限。同样,对于LDPC晶格的解码复杂性,可以得出上下限之间的精确计算数量。解码复杂度的分析证实了将LDPC码用于晶格结构。可以看出,解码复杂度随维数线性增长,随行权重呈指数增长,并且就格的编码增益而言是多项式时间。渐进边缘增长算法扩展到了我们所谓的E-PEG算法。该算法用于构造一类嵌套的常规二进制代码以生成相应的晶格。构造一类2级晶格。将此类的性能与相应的1级结构和其他众所周知的结构进行比较。

著录项

  • 作者单位

    Carleton University (Canada).;

  • 授予单位 Carleton University (Canada).;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号