首页> 外文学位 >Combating Hepatitis B Virus by Targeting DNA Polymerase Computational Insights into Resistance Development and Search for Novel Inhibitors by Virtual Screening.
【24h】

Combating Hepatitis B Virus by Targeting DNA Polymerase Computational Insights into Resistance Development and Search for Novel Inhibitors by Virtual Screening.

机译:通过靶向DNA聚合酶的抗药性开发来对抗乙型肝炎病毒,并通过虚拟筛选寻找新型抑制剂。

获取原文
获取原文并翻译 | 示例

摘要

Hepatitis B virus is among the top ten infectious diseases in the world. Hundreds of thousands of people are chronically infected with hepatitis B virus (HBV), a major cause of liver cirrhosis and cancer. Availability of vaccine has certainly helped to control the increasing number of HBV infected patients. However, it has no role in treating already infected patients. Currently seven drugs have been approved for the treatment of HBV infections, out of which two are interferons and five are small molecule therapies. Certain limitations of the currently available therapies necessitate development of novel and robust drug therapy against HBV infections.;There are 5 marketed nucleotide/nucleoside analogs for the treatment of HBV infections which inhibit HBV DNA polymerase (HDP), but resistant HBV strains have developed in most cases. We built a three-dimensional comparative model of HDP based on an HIV-1 RT X-ray structure using multiple alignment followed by minimization, validation and molecular dynamics (MD) simulation. The resultant model demonstrates reasonable stereochemical properties. Our homology model of HDP differed from the previously reported homology model in two aspects. Our sequence alignment made sure to match properly a conserved K residue found in HIV-1 RT; we believe that analogous to the role of K65 in HIV-1 RT, rtK32 plays a considerable role in the binding of nucleotides. Secondly, we further used a higher resolution 3D-structure template (1T05) compared to the previously used template (1RTD), which is also more appropriate since it contains a co-crystallized inhibitor, tenofovir.;Conformational changes in amino acid side chains during a subsequent MD simulation led to the formation of a small pocket lined by hydrophobic residues including rtM204 near the nucleotide binding site. The exocyclic alkene moiety of entecavir and the sulfur atom of lamivudine occupied this pocket, explaining the better binding affinity of the inhibitors compared to natural substrates. Furthermore, we used the model to predict that mutation of rtM204 to a beta-branched amino acid would cause steric hindrance, thus leading to the reduced activity of the inhibitors, as has been reported.;Binding free energy calculations were carried out for one of the substrates (dCTP) of HDP and two known inhibitors (3TC and FTC) with wild-type HDP and with one of the most common mutants of HDP, using molecular dynamics simulations. Our MD simulations and binding energy calculations support the available experimental data that the mutation rtM204I causes decreased binding affinity of the inhibitors because of steric hindrance, which results in decreased activity of the inhibitors against the mutant HDP.;We further used the equilibrated wild-type HDP-CTP complex to build a structure-based pharmacophore model, which was further employed to search for novel active-site inhibitors. This exercise resulted in seven non-nucleoside screening hits with probable binding towards the HDP active site. However, the biological results available thus far did not show any anti-HBV activity for these small molecules.;All the small molecule inhibitors available in the market to inhibit HBV DNA polymerase are nucleoside/nucleotide analogs. We have carried out structure-based virtual screening to find novel non-nucleoside HBV DNA polymerase inhibitors. This screening approach required a different homology model of HDP. Another homology model was built using HIV-1 RT, complexed with a non-nucleoside RT inhibitor. Through a series of filtering procedures and visual inspections, we selected ∼40 small molecules for biological testing. None of the selected molecules showed any anti-HBV activity. The molecules were also tested for anti-HCV activity. Two molecules showed moderate anti-HCV activity. To our knowledge, this is the first of its kind study to seek non-nucleoside small-molecule inhibitors of HDP and will serve as a starting point for further investigations.
机译:乙型肝炎病毒是世界十大传染病之一。数十万人长期感染了乙型肝炎病毒(HBV),这是肝硬化和癌症的主要原因。疫苗的供应肯定有助于控制越来越多的HBV感染患者。但是,它对已经感染的患者没有作用。目前,已经批准了七种药物用于治疗HBV感染,其中两种是干扰素,另外五种是小分子疗法。当前可用疗法的某些局限性要求开发针对HBV感染的新颖而强大的药物疗法。有5种市售核苷酸/核苷类似物可抑制HBV DNA聚合酶(HDP),但已开发出抗性HBV菌株。在大多数情况下。我们基于HIV-1 RT X射线结构,使用多重比对,然后进行最小化,验证和分子动力学(MD)模拟,建立了HDP的三维比较模型。所得模型证明了合理的立体化学性质。我们的HDP同源性模型在两个方面不同于先前报道的同源性模型。我们的序列比对确保正确匹配HIV-1 RT中发现的保守K残基。我们认为,类似于K65在HIV-1 RT中的作用,rtK32在核苷酸结合中起着相当重要的作用。其次,与之前使用的模板(1RTD)相比,我们还使用了更高分辨率的3D结构模板(1T05),这也是更合适的,因为它包含共结晶的抑制剂替诺福韦;在此过程中氨基酸侧链的构象变化随后的MD模拟导致在核苷酸结合位点附近由疏水残基(包括rtM204)衬里的小口袋的形成。恩替卡韦的环外烯烃部分和拉米夫定的硫原子占据了这个口袋,这说明与天然底物相比,抑制剂具有更好的结合亲和力。此外,我们已经使用该模型预测rtM204突变为β-支链氨基酸会引起空间位阻,从而导致抑制剂的活性降低,如已报道的那样;对其中一种进行了结合自由能计算使用分子动力学模拟,HDP的底物(dCTP)和两种已知的抑制剂(3TC和FTC)具有野生型HDP和最常见的HDP突变体之一。我们的MD模拟和结合能计算支持了现有的实验数据,即rtM204I突变会由于空间位阻而导致抑制剂的结合亲和力降低,从而导致抑制剂对HDP突变体的活性降低;我们进一步使用了平衡的野生型HDP-CTP复合物可建立基于结构的药效团模型,该模型可进一步用于寻找新型活性位点抑制剂。这项工作导致了7个非核苷筛选命中,可能与HDP活性位点结合。然而,迄今为止可获得的生物学结果并未显示出对这些小分子有任何抗HBV活性。市场上所有可抑制HBV DNA聚合酶的小分子抑制剂均为核苷/核苷酸类似物。我们已经进行了基于结构的虚拟筛选,以发现新型的非核苷HBV DNA聚合酶抑制剂。这种筛选方法需要HDP的不同同源性模型。使用HIV-1 RT与非核苷RT抑制剂复合,建立了另一个同源性模型。通过一系列的过滤程序和目视检查,我们选择了约40个小分子进行生物学测试。所选分子均未显示出任何抗HBV活性。还测试了这些分子的抗HCV活性。两个分子显示出中等的抗HCV活性。据我们所知,这是首次寻求HDP的非核苷小分子抑制剂的同类研究,并将作为进一步研究的起点。

著录项

  • 作者

    Daga, Pankaj R.;

  • 作者单位

    The University of Mississippi.;

  • 授予单位 The University of Mississippi.;
  • 学科 Chemistry Pharmaceutical.;Health Sciences Pharmacy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号