首页> 外文学位 >Una secuencia didactica para un concepto unificador en un curso de algebra lineal de un programa de formacion a la ingenieria.
【24h】

Una secuencia didactica para un concepto unificador en un curso de algebra lineal de un programa de formacion a la ingenieria.

机译:工程培训计划的线性代数课程中用于统一概念的教学序列。

获取原文
获取原文并翻译 | 示例

摘要

Introduction to unifying concepts in the teaching of mathematics typically adopts the axiomatic approach. It is not surprising that under these conditions, tasks tend to become more algorithmic in order to help students' performance and favor apparent transparency of the new concept (Chevallard, 1991). This classical response makes forget the unifying role of the concept and does not encourage its powerful use. In order to improve the learning of a unifying concept, this thesis aimed at studying the relevance of a didactical sequence in the formal training of future engineers, centered on a unifying concept of linear algebra: the linear transformation (LT).;The idea of unification and the question of meaning are addressed through the development of problem solving competencies. The sequence of problems to solve is aimed at constructing an abstract concept (the LT) on a domain which is already mathematized, with the intent of abstracting the unifying aspect of the formal notion (Astolfi y Drouin, 1992).;Building on the work of Dupin (1995) and Sfard (1991), in mathematics and science education, we have designed didactical situations with elements of modelling, by articulating two ways of conceiving the notion (« procedural » and « structural ») in order to find a safest, more economical and reusable solving strategy. In particular, we have situated the notion in various mathematical domains where it is applicable: arithmetics, geometry, algebra and analysis. The sequence aims at developing connections between different mathematical frameworks, and between various representations of the LT in the different mathematical registers, with the historical development of the notion as a source of inspiration. Moreover, the didactical sequence aims at achieving a balance between the practical aspect of the tasks in the foreseen professional practice and the theoretical aspect required to structure the concepts.;The study was conducted in Chile, with engineering students in the first linear algebra course of the program. We had completed a detailed a priori analysis of the sequence in order to reinforce its robustness and prepare for data analysis. With the analysis of answers to the entry questionnaire, team productions to the tasks, and comments received in students interview, we were able to identify the mathematical competencies and the levels of communication (Caron, 2004) put at work in their use of the LT. Results show emergence of the unifying role of the LT, even with students whose problem solving habits in mathematics have been marked by a procedural influence in the teaching and the learning.;The didactical sequence showed its effectiveness in the progressive construction by students of the linear transformation concept (LT), with its specific meaning and properties: the TL has appeared as an economical means of solving problems outside of linear algebra, which helped students in abstracting its underlying properties. In contrast, we have also observed that some previously taught concepts could act as obstacles to the desired unification. In these cases, students could revert to their old habits, and their use of the LT would rather reveal their partial understanding than help guide the resolution.;Keywords: didactical sequence, unifying concept, linear transformation, procedural, structural, modelling, application, change of a system of representations.
机译:在数学教学中对统一概念的介绍通常采用公理方法。在这种情况下,为了帮助学生提高表现并支持新概念的明显透明性,任务倾向于变得更具算法性也就不足为奇了(Chevallard,1991)。这种经典的反应使人们忘记了该概念的统一作用,并且不鼓励其强有力的使用。为了提高对统一概念的学习,本文旨在研究教学序列在未来工程师的正式培训中的相关性,重点是线性代数的统一概念:线性变换(LT)。解决问题能力的发展解决了统一和意义问题。要解决的问题序列旨在在已经数学化的领域上构建一个抽象概念(LT),以抽象化形式概念的统一方面(Astolfi y Drouin,1992)。 Dupin(1995)和Sfard(1991)的研究,在数学和科学教育中,我们设计了具有建模元素的教学情境,通过阐明两种理解概念的方式(“程序性”和“结构性”)来找到最安全的方法。 ,更经济,可重用的解决方案。尤其是,我们将该概念置于适用的各种数学领域:算术,几何,代数和分析。该顺序旨在建立不同数学框架之间以及不同数学寄存器中LT的各种表示形式之间的联系,并将这一概念的历史发展作为启发。此外,教学顺序的目的是在预见的专业实践中的任务的实践方面和构成概念的理论方面之间取得平衡。该研究是在智利进行的,工程专业的学生在第一门线性代数课程中学习。该程序。我们已经对该序列进行了详细的先验分析,以增强其鲁棒性并准备进行数据分析。通过分析入门调查表的答案,完成任务的团队成果以及在学生面试中收到的评论,我们能够确定数学能力和沟通水平(Caron,2004年),他们在使用LT时会发挥作用。结果显示了LT的统一作用的出现,即使学生的数学问题解决习惯在教学和学习中受到程序影响也很明显。;教学序列显示了它在线性学生逐步建构中的有效性转换概念(LT),具有其特定的含义和性质:TL已成为解决线性代数之外问题的一种经济方法,可帮助学生抽象其基本性质。相反,我们也观察到一些先前讲授的概念可能会阻碍期望的统一。在这些情况下,学生可能会恢复他们的旧习惯,而他们对LT的使用宁愿显示他们的部分理解而不是帮助指导解决方案。关键词:教学序列,统一概念,线性变换,过程,结构,建模,应用,代表制的改变。

著录项

  • 作者

    Pascual, Sara.;

  • 作者单位

    Universite de Montreal (Canada).;

  • 授予单位 Universite de Montreal (Canada).;
  • 学科 Education Mathematics.;Education Higher.;Education Vocational.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 345 p.
  • 总页数 345
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 肿瘤学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号