首页> 外文学位 >Plasmon Enhanced Photoemission.
【24h】

Plasmon Enhanced Photoemission.

机译:等离子增强的光发射。

获取原文
获取原文并翻译 | 示例

摘要

Next generation ultrabright light sources will operate at megahertz repetition rates with temporal resolution in the attosecond regime. For an X-Ray Free Electron Laser (FEL) to operate at such repetition rate requires a high quantum efficiency (QE) cathode to produce electron bunches of 300 pC per 1.5μ J incident laser pulse. Semiconductor photocathodes have sufficient QE in the ultraviolet (UV) and the visible spectrum, however, they produce picosecond electron pulses due to the electron-phonon scattering. On the other hand, metals have two orders of magnitude less QE, but can produce femtosecond pulses, that are required to form the optimum electron distribution for high efficiency FEL operation. In this work, a novel metallic photocathode design is presented, where a set of nano-cavities is introduced on the metal surface to increase its QE to meet the FEL requirements, while maintaining the fast time response.;Photoemission can be broken up into three steps: (1) photon absorption, (2) electron transport to the surface, and (3) crossing the metal-vacuum barrier. The first two steps can be improved by making the metal completely absorbing and by localizing the fields closer to the metal surface, thereby reducing the electron travel distance. Both of these effects can be achieved by coupling the incident light to an electron density wave on the metal surface, represented by a quasi-particle, the Surface Plasmon Polariton (SPP).;The photoemission then becomes a process where the photon energy is transferred to an SPP and then to an electron. The dispersion relation for the SPP defines the region of energies where such process can occur. For example, for gold, the maximum SPP energy is 2.4 eV, however, the work function is 5.6 eV, therefore, only a fourth order photoemission process is possible. In such process, four photons excite four plasmons that together excite only one electron. The yield of such non-linear process depends strongly on the light intensity.;In this work, the structure consisted of rectangular nano-grooves (NGs) arranged in a subwavelength grating on a metal surface is presented that provides a dramatic increase in the metal's absorption, field localization, and field enhancement. When light is polarized perpendicular to the orientation of the grooves a standing SPP wave is excited along the vertical walls in the NGs, that act as Fabry-Perot resonators. By adjusting the geometry of the NGs and the period of the subwavelength grating the resonance can be fine tuned to a desired position, for example, the laser fundamental wavelength, anywhere from the UV to the near infrared (NIR).;Two types of gratings are presented: (a) a gold grating with period of 600 nm, and (b) an aluminum-gold grating with a period of 100 nm; both with resonance at 720 nm. In each case, strong on-resonance absorption was observed, with over 98% for grating (b). Unlike the grating-coupled SPP waves, where the angle is well defined by the momentum matching condition, the resonant NGs allow coupling to the standing modes at a range of angles of incidence, referred to as the angular bandwidth. A new model for the on-resonance absorption based on the ensamble action of the NGs is presented that serves as the basis for a design of an NG grating with an ultrawide spectral as well as angular bandwidth. For sample (b), the angular bandwidth is 80 degrees, corresponding to an opening angle of 160 degrees.;The photoemission enhancement for such a grating was measured to be seven orders of magnitude for a four-photon photoemission. This is an incredible result demonstrating the power of the plasmonic grating presented, which is an efficient light trapper and field enhancer for a non-linear processes. These results demonstrate that the metal photocathode prepared with a NG grating on the metal surface will provide sufficient pulse charge driven by a 1μ J 15 fs pulsed laser at 800 nm for the optimum FEL operation.
机译:下一代超亮光源将以兆赫兹的重复频率运行,并且在阿秒范围内具有时间分辨率。为了使X射线自由电子激光器(FEL)以这种重复速率工作,需要一个高量子效率(QE)阴极,以便每1.5μJ入射激光脉冲产生300 pC的电子束。半导体光电阴极在紫外线(UV)和可见光谱中具有足够的QE,但是,由于电子-声子的散射,它们会产生皮秒电子脉冲。另一方面,金属的QE降低了两个数量级,但可以产生飞秒脉冲,这是形成高效率FEL操作的最佳电子分布所必需的。在这项工作中,提出了一种新颖的金属光电阴极设计,其中在金属表面上引入了一组纳米腔,以提高其QE以满足FEL要求,同时保持快速的时间响应。;光发射可分为三部分步骤:(1)光子吸收;(2)电子传输到表面;(3)穿过金属-真空势垒。前两个步骤可以通过使金属完全吸收并通过使场更靠近金属表面而得以改善,从而减小电子的传播距离。通过将入射光耦合到金属表面上的电子密度波(由准粒子表面等离激元极化子(SPP)表示),可以实现这两种效果;然后,光发射成为光子能量转移的过程到SPP,再到电子。 SPP的色散关系定义了可能发生这种过程的能量区域。例如,对于金,最大SPP能量为2.4 eV,但是功函数为5.6 eV,因此,仅可能进行四阶光发射过程。在这种过程中,四个光子激发四个等离子激元,它们仅激发一个电子。这种非线性过程的产量在很大程度上取决于光强度。在这项工作中,提出了由矩形纳米槽(NGs)构成的结构,该结构排列在金属表面上的亚波长光栅中,极大地增加了金属的吸收,场定位和场增强。当光垂直于凹槽的方向偏振时,沿着NG中的垂直壁激发SPP驻波,该垂直壁用作Fabry-Perot谐振器。通过调整NG的几何形状和亚波长光栅的周期,可以将共振微调到所需的位置,例如从UV到近红外(NIR)的任何位置的激光基本波长。;两种类型的光栅呈现:(a)周期为600 nm的金光栅,和(b)周期为100 nm的铝金光栅;两者均在720 nm处共振。在每种情况下,观察到强的导通共振吸收,其中光栅(b)超过98%。与光栅耦合的SPP波不同,后者的角由动量匹配条件很好地定义,谐振NG允许在一定的入射角范围(称为角带宽)耦合到站立模式。提出了一种基于NG编码作用的共振吸收新模型,该模型可作为具有超宽光谱和角带宽的NG光栅设计的基础。对于样品(b),角带宽为80度,对应于160度的张开角;对于四光子光发射,此类光栅的光发射增强被测量为七个数量级。这是令人难以置信的结果,证明了所提出的等离激元光栅的功率,它是用于非线性过程的高效光阱和场增强器。这些结果表明,在金属表面上用NG光栅制备的金属光电阴极将提供由800纳米的1μJ 15 fs脉冲激光器驱动的足够的脉冲电荷,以实现最佳的FEL操作。

著录项

  • 作者

    Polyakov, Aleksandr N.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Physics General.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号