首页> 外文学位 >Probing DNA-induced colloidal interactions and dynamics with scanning-line optical tweezers.
【24h】

Probing DNA-induced colloidal interactions and dynamics with scanning-line optical tweezers.

机译:用扫描线光学镊子探测DNA诱导的胶体相互作用和动力学。

获取原文
获取原文并翻译 | 示例

摘要

A promising route to forming novel nanoparticle-based materials is directed self-assembly, where the interactions among multiple species of suspended particles are intentionally designed to favor the self-assembly of a specific cluster arrangement or nanostructure. DNA provides a natural tool for directed particle assembly because DNA double helix formation is chemically specific---particles with short single-stranded DNA grafted on their surfaces will be bridged together only if those strands have complementary base sequences. Moreover, the temperature-dependent stability of such DNA bridges allows the resulting attraction to be modulated from negligibly weak to effectively irreversible over a convenient range of temperatures. Surprisingly, existing models for DNA-induced particle interactions are typically in error by more than an order of magnitude, which has hindered efforts to design complex temperature, sequence and time-dependent interactions needed for the most interesting applications. Here we report the first spatially resolved measurements of DNA-induced interactions between pairs of polystyrene microspheres at binding strengths comparable to those used in self-assembly experiments. The pair-interaction energies measured with our optical tweezers instrument can be modeled quantitatively with a conceptually straightforward and numerically tractable model, boding well for their application to direct self-assembly. In addition to understanding the equilibrium interactions between DNA-labeled particles, it is also important to consider the dynamics with which they bind to and unbind from one another. Here we demonstrate for the first time that carefully designed systems of DNA-functionalized particles exhibit effectively diffusion-limited binding, suggesting that these interactions are suitable to direct efficient self-assembly. We systematically explore the transition from diffusion-limited to reaction-limited binding by decreasing the DNA labeling density, and develop a simple dynamic model that is able to reproduce some of the anomalous kinetics observed in multivalent binding processes. Specifically, we find that when compounded, static disorder in the melting rate of single DNA duplexes gives rise to highly non-exponential lifetime distributions in multivalent binding. Together, our findings motivate a nanomaterial design approach where novel functional structures can be found computationally and then reliably realized in experiment.
机译:形成新颖的基于纳米颗粒的材料的有前途的方法是定向自组装,其中有意设计了多种悬浮颗粒之间的相互作用,以促进特定簇排列或纳米结构的自组装。 DNA提供了一种天然的定向粒子装配工具,因为DNA双螺旋的形成具有化学特异性-仅在表面上接有短单链DNA的粒子才会被桥接在一起,前提是这些链具有互补的碱基序列。而且,这种DNA桥的温度依赖性稳定性允许在合适的温度范围内将所产生的吸引力从可忽略的弱调节为有效不可逆。令人惊讶的是,现有的DNA诱导的颗粒相互作用模型通常误差超过一个数量级,这阻碍了设计最有趣的应用所需的复杂的温度,序列和时间依赖性相互作用的努力。在这里,我们报道了在与自组装实验中使用的结合强度相当的结合强度下,聚苯乙烯微球对之间的DNA诱导相互作用的首次空间分辨测量。可以使用概念上简单易懂且易于数值计算的模型对使用我们的光学镊子仪器测得的对相互作用能进行定量建模,这很好地说明了它们在直接自组装中的应用。除了了解DNA标记的粒子之间的平衡相互作用外,考虑它们相互结合和解除结合的动力学也很重要。在这里,我们首次证明,精心设计的DNA功能化颗粒系统表现出有效的扩散限制结合,表明这些相互作用适合指导有效的自组装。我们通过降低DNA标记密度来系统地探索从扩散受限结合到反应受限结合的转变,并开发了一个简单的动力学模型,该模型能够重现在多价结合过程中观察到的一些异常动力学。具体而言,我们发现当复合时,单个DNA双链体的熔解速率中的静态紊乱在多价结合中引起高度非指数的寿命分布。总之,我们的发现激发了一种纳米材料设计方法,该方法可以通过计算发现新颖的功能结构,然后在实验中可靠地实现。

著录项

  • 作者

    Rogers, William Benjamin.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Chemistry Biochemistry.;Biophysics General.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号