首页> 外文学位 >The Electronic Structure of Biomolecular Self-Assembled Monolayers.
【24h】

The Electronic Structure of Biomolecular Self-Assembled Monolayers.

机译:生物分子自组装单分子层的电子结构。

获取原文
获取原文并翻译 | 示例

摘要

The studies presented here address the characterization of the electronic structure of various self-assembled monolayers (SAMs) of peptide nucleic acid (PNA) and tetraphenylporphyrin (TPP) SAMs and arrays, formed on gold substrates.;PNA is a promising alternative to DNA for bio-sensing applications, as well as for strategies for self-assembly based on nucleic acid hybridization. In recent years charge transfer through PNA molecules was a focus of research due to possible applications in self-assembled molecular circuits and molecular tools. In light of this research it is interesting to investigate the electronic structure of PNA interfaces to gold, a potential electrode material.;TPP is, due to its electronic structure, an organic p-type molecular semiconductor. Such a material can provide an alternative to standard micro- and optoelectronic devices and in recent years more attention was paid to semiconducting polymers and organic compounds offering these low-cost and flexible alternatives. Therefore, it is of high importance to investigate the prospect of using modified TPP molecules for the formation of interconnected molecular networks on metallic surfaces.;All investigated monolayers were formed from solution in a nitrogen atmosphere inside a homemade glove box. This process allowed for PNA SAM and TPP SAM and array formation on clean Au substrates without the exposure to the ambient atmosphere. Ultraviolet and X-ray photoemission spectroscopy (UPS and XPS) measurements on the resulting PNA SAMs and TPP SAMs and arrays, which were performed in a to the glove box attached vacuum chamber containing a photoemission spectrometer, revealed the hole injection barriers at the interfaces and the interface dipoles.;In addition to the UPS and XPS measurements on PNA, electronic structure calculations based on molecular dynamics sampling of the PNA structure were obtained, yielding the HOMO-LUMO gap and the electronic density of states for PNA. Combined with the UPS data, the theoretical calculations enabled estimation of the charge injection barriers for the PNA SAMs at the interface, as well as the assignment of individual UP-spectral features to specific molecular orbitals.;The orbital line-up at the interface between the Au substrate and the PNA indicated a significant interface dipole resulting in the alignment of the Au Fermi level near the center of the PNA HOMO-LUMO gap. This alignment causes large charge injection barriers for both holes and electrons, and thus impedes charge transfer from Au into the PNA SAM. The study of PNA molecules with ferrocene termini showed that this hole injection barrier is shifted to lower energies at the PNA/ferrocene interface. This shift was explained with a molecular orbital reconfiguration through the presence of the ferrocene terminus. The further investigation of the dependence of the electronic structure of PNA SAMs, based on their orientation, showed that incomplete films containing flat lying molecules can have a significant impact on the charge injection barriers. The close proximity of the nucleobases to the Au surface offers new ways for charge transfer between the substrate and the PNA molecule through its nitrogen sites, leading to a lowering of the hole injection barrier at the interface.;The TPP arrays were formed by depositing AgNO3 on the Au substrate prior to TPP incubation using the electrospray technique. The interaction of AgNO3 with the TPP promoted the formation of an interconnected thin film forming a network on the Au substrate. The line-up at the Au/TPP interface without AgNO3 exposure showed an interface dipole formation with injection barriers that would potentially obstruct charge injection into the molecule. However, the addition of AgNO3 to the process resulted in the formation of fine structures, and lead to a lower hole injection barrier due to an induced dipole, which would ultimately improve charge transfer between the substrate and the thin film. A separate thiolated TPP derivative was used to form SAMs on a gold substrate. The SAM exhibited an even lower injection barrier than the mentioned TPP thin film with AgNO3 exposure, leading to the conclusion that a mix of both TPP derivatives could potentially lead to a SAM with long range interconnectivity and a low hole injection barrier towards the substrate.
机译:本文介绍的研究针对在金底物上形成的肽核酸(PNA)和四苯基卟啉(TPP)SAM和阵列的各种自组装单层(SAM)的电子结构的表征.PNA是用于DNA的有希望的替代品生物传感应用以及基于核酸杂交的自组装策略。近年来,由于在自组装分子电路和分子工具中的可能应用,通过PNA分子进行电荷转移成为研究的重点。根据这项研究,研究PNA与作为电位电极材料的金的界面的电子结构很有趣。TPP由于其电子结构而成为有机的p型分子半导体。这种材料可以提供标准微电子和光电设备的替代品,近年来,人们更加关注提供这些低成本和灵活替代品的半导体聚合物和有机化合物。因此,研究使用修饰的TPP分子在金属表面上形成相互连接的分子网络的前景具有重要的意义。所有研究的单分子层都是在自制手套箱内的氮气氛中由溶液形成的。该过程允许在干净的Au基板上进行PNA SAM和TPP SAM以及阵列的形成,而无需暴露于周围环境。在所得的PNA SAM和TPP SAM和阵列上进行的紫外线和X射线光电子能谱(UPS和XPS)测量在装有光电子能谱仪的手套箱连接的真空室中进行,揭示了界面处的空穴注入障碍除了在PNA上进行UPS和XPS测量外,还获得了基于PNA结构分子动力学采样的电子结构计算,从而得出PNA的HOMO-LUMO间隙和电子态密度。结合UPS数据,理论计算可以估算PNA SAM在界面处的电荷注入势垒,以及将各个UP光谱特征分配给特定的分子轨道。 Au基底和PNA表示明显的界面偶极子,导致Au Fermi能级在PNA HOMO-LUMO间隙中心附近对齐。这种对准会为空穴和电子造成较大的电荷注入势垒,因此会阻止电荷从Au转移到PNA SAM中。对带有二茂铁末端的PNA分子的研究表明,该空穴注入势垒在PNA /二茂铁界面处转移为较低的能量。通过二茂铁末端的存在,通过分子轨道重构来解释这种转变。根据PNA SAMs的取向对其电子结构的依赖性进行的进一步研究表明,包含平坦分子的不完整薄膜可能会对电荷注入势垒产生重大影响。核碱基与Au表面的紧密接近为底物和PNA分子之间通过其氮原子位置之间的电荷转移提供了新的途径,从而降低了界面处的空穴注入势垒。TPP阵列是通过沉积AgNO3形成的在使用电喷雾技术进行TPP孵育之前,先在Au底物上进行修饰。 AgNO3与TPP的相互作用促进了互连薄膜的形成,从而在Au基板上形成网络。没有暴露于AgNO3的Au / TPP界面处的排列显示了界面偶极子的形成,其注入势垒可能会阻止电荷注入到分子中。但是,向该工艺中添加AgNO3会导致形成精细的结构,并由于感应偶极子而导致较低的空穴注入势垒,这最终将改善衬底与薄膜之间的电荷转移。另一种硫醇化的TPP衍生物用于在金底物上形成SAM。 SAM的注入势垒比提到的暴露于AgNO3的TPP薄膜还要低,从而得出的结论是,两种TPP衍生物的混合物都可能导致SAM具有长距离的互连性和对衬底的低空穴注入势垒。

著录项

  • 作者

    Wolak, Matthaeus.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号