首页> 外文学位 >Live-cell imaging studies of collective cell migration and tissue elongation using Drosophila egg chamber.
【24h】

Live-cell imaging studies of collective cell migration and tissue elongation using Drosophila egg chamber.

机译:使用果蝇卵腔进行的集体细胞迁移和组织伸长的活细胞成像研究。

获取原文
获取原文并翻译 | 示例

摘要

Drosophila oogenesis is a powerful model for the study of fundamental questions in cell and developmental biology including stem cell, collective cell migration, mRNA transportation, and epithelium morphogenesis. In addition to its longstanding value as a genetically tractable model, it has recently emerged as an excellent system for live imaging. My graduate studies used both genetic and microscopic techniques to study cellular activities in living tissue, and includes two parts: the first is the study of collective guidance of border cell migration using a photoactivatable form of the small GTPase Rac and a Rac FRET biosensor; secondly we used live-cell imaging and genetic manipulation to discover and characterize basal actomyosin oscillations that represent a novel mechanism of tissue elongation.;Collective cell migration is an important process both physiology and pathological conditions. The small GTPase Rac is an important regulator of actin polymerization and is required for most cell migrations. However, global activation or inhibition of Rac activity blocks collective border cell migration suggesting that temporal and/or spatial regulation of Rac activity is essential. Using a recently developed photoactivatable Rac (PA-Rac), which allows rapid, focal, and reversible activation or inactivation of Rac using light, we found local activation of Rac was sufficient to redirect the whole border cell cluster and rescue the loss-of-guidance phenotype. While inactivation of Rac in one cell of the cluster caused a dramatic response in the other cells, suggesting that the cells sense migratory direction as a group based on the relative levels of Rac activity. Using a Rac FRET biosensor reporter, Rac activity was found to be higher in the leading cell than the followers. Taken together, these studies show that border cells sense direction collectively based on relative levels of Rac activity. Understanding how molecular dynamics lead to cellular behaviors that ultimately sculpt organs and tissues is a major challenge not only in basic developmental biology but also in tissue engineering and regenerative medicine. Using live imaging, we found that the basal surfaces of Drosophila follicle cells undergo a series of directional, oscillating contractions driven by periodic myosin accumulation on a polarized actin network. Inhibition of the actomyosin contractions or their coupling to extracellular matrix (ECM) blocked elongation of the whole tissue, whereas enhancement of the contractions exaggerated it. This Myosin contraction was regulated by the small GTPase Rho, ROCK and cytosolic calcium. Disrupting the link between the actin cytoskeleton and the ECM decreased, while enhancing cell-ECM adhesion increased, the amplitude and period of the contractions. In contrast, disrupting cell-cell adhesions resulted in loss of the actin network. Our findings reveal a novel mechanism controlling organ shape and a new model for the study of the effects of oscillatory actomyosin activity within a coherent cell sheet.
机译:果蝇卵子发生是研究细胞和发育生物学基本问题的强大模型,包括干细胞,集体细胞迁移,mRNA转运和上皮形态发生。除了其作为遗传易处理模型的长期价值外,它最近还成为用于实时成像的出色系统。我的研究生研究使用遗传和微观技术研究活组织中的细胞活动,包括两个部分:第一部分是使用光激活形式的小GTPase Rac和Rac FRET生物传感器对边界细胞迁移的集体指导进行研究;其次,我们利用活细胞成像和遗传操作来发现和表征基底肌动球蛋白振荡,这代表了组织伸长的新机制。集体细胞迁移是生理和病理条件的重要过程。小的GTPase Rac是肌动蛋白聚合的重要调节剂,是大多数细胞迁移所必需的。但是,Rac活性的整体激活或抑制会阻止集体边界细胞迁移,这表明Rac活性的时间和/或空间调节至关重要。使用最近开发的光活化Rac(PA-Rac),该光可以快速,聚焦和可逆地使用光激活Rac或使其失活,我们发现Rac的局部激活足以重定向整个边界细胞簇并挽救失活。指导表型。尽管集群中一个细胞中Rac的失活在其他细胞中引起了剧烈的反应,这表明这些细胞根据Rac活性的相对水平整体感觉到迁移方向。使用Rac FRET生物传感器报道分子,发现前导细胞中的Rac活性高于追随者。综上所述,这些研究表明边界细胞根据Rac活性的相对水平共同感知方向。理解分子动力学如何导致最终塑造器官和组织的细胞行为,不仅在基本的发育生物学中而且在组织工程学和再生医学中都是一个重大挑战。使用实时成像,我们发现果蝇卵泡细胞的基础表面经历了一系列定向的,振荡的收缩,这些收缩是由周期性肌球蛋白在极化的肌动蛋白网络上累积驱动的。放线菌素收缩的抑制或它们与细胞外基质(ECM)的结合阻止了整个组织的伸长,而收缩的增强则使其放大。肌球蛋白的收缩受小GTPase Rho,ROCK和胞质钙的调节。破坏肌动蛋白细胞骨架和ECM之间的联系减少,而增强细胞ECM粘附增加,收缩的幅度和周期。相反,破坏细胞-细胞粘附导致肌动蛋白网络的丧失。我们的发现揭示了一种控制器官形状的新机制和一种用于研究相干细胞片内振荡性肌动球蛋白活性影响的新模型。

著录项

  • 作者

    He, Li.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Cell.;Health Sciences Human Development.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号