首页> 外文学位 >Surface confined living radical polymerization and its application in coating microfluidics for use in protein electrophoretic separation.
【24h】

Surface confined living radical polymerization and its application in coating microfluidics for use in protein electrophoretic separation.

机译:表面受限的活性自由基聚合及其在用于蛋白质电泳分离的涂层微流体中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Electrophoretic separations of proteins on microfluidic chips made of glass, silica or polymer materials are limited by their electrostatic or hydrophobic interactions with microchannel surfaces. Hydrophilic polymer coating on the surface by surface confined living radical polymerization is investigated to solve these problems.; Surface initiated atom transfer radical polymerization (ATRP) of acrylamide is achieved on silica at room temperature by using a catalytic system of CuCl/CbCl 2/tris(2-dimethylaminoethyl)amine. The thickness of the polyacrylamide film is controllable either by monomer concentration or by reaction time. Kinetics of the reaction is studied and compared with the same reaction using a CuCl/bipyridine catalytic system. It is concluded that at room temperature, both the rate for chain propagation and termination are higher, despite a much higher concentration of Cu(II) to reduce the radical population at room temperature. Termination is caused by radical combination and most of the chlorine loss is due to the combination of initiator radicals.; The surface of polydimethysiloxane (PDMS) is modified by surface oxidation, forming of a monolayer and coating of polyacrylamide by ATRP. ATR-FTIR is used to characterize the functional groups on the surface. Optimum oxidation time and reaction conditions are probed. The modified surface exhibits a 20-fold improvement in resisting irreversible adsorption of lysozyme, compared to bare PDMS, and a 10-fold improvement compared to bare glass. The hydrophobic recovery of oxidized PDMS, is prevented. The surface remains hydrophilic for at least one month.; The modification of PDMS microchips with polyacrylamide by ATRP is investigated. The resistance to protein adsorption in open-channel electrophoresis is studied by analyzing the voltage-dependence of the electropherogram of bovine serum albumin. Plate heights of 35 μm were obtained at all voltages, and this was shown to be due to a distribution of species. There is no detectable contribution to broadening from adsorption. No evidence of irreversible adsorption of the protein was observed. The separation of lysozyme and cytochrome C was achieved in a separation length of 3.5 cm. It is concluded that the growth of polyacrylamide chains on PDMS reduced hydrophobic and electrostatic interactions to avoid protein adsorption to the inner wall of the PDMS microchannels.
机译:在玻璃,二氧化硅或聚合物材料制成的微流控芯片上,蛋白质的电泳分离受到与微通道表面的静电或疏水相互作用的限制。为了解决这些问题,研究了通过表面受限的活性自由基聚合在表面上涂布亲水性聚合物。在室温下,通过使用CuCl / CbCl 2 /三(2-二甲基氨基乙基)胺催化体系,在硅胶上实现了丙烯酰胺的表面引发原子转移自由基聚合(ATRP)。聚丙烯酰胺膜的厚度可通过单体浓度或反应时间来控制。研究了反应动力学,并与使用CuCl /联吡啶催化系统的相同反应进行了比较。结论是,在室温下,尽管铜(II)的浓度要高得多,以减少自由基在室温下的扩散,但链增长和终止的速率都较高。端基是由自由基结合引起的,大部分氯的损失是由引发剂自由基的结合引起的。聚二甲基硅氧烷(PDMS)的表面通过表面氧化,形成单层并通过ATRP进行聚丙烯酰胺涂层改性。 ATR-FTIR用于表征表面上的官能团。探索了最佳的氧化时间和反应条件。与裸露的PDMS相比,改性表面在抵抗溶菌酶的不可逆吸附方面表现出20倍的改善,与裸露的玻璃相比表现出10倍的改善。防止了氧化PDMS的疏水性回收。表面保持亲水至少一个月。研究了用ATRP对聚丙烯酰胺改性PDMS微芯片。通过分析牛血清白蛋白电泳图的电压依赖性,研究了在开放通道电泳中对蛋白质吸附的抗性。在所有电压下获得的板高均为35μm,这表明是由于物种分布所致。对吸附的增宽没有可检测的贡献。没有观察到蛋白质不可逆吸附的证据。溶菌酶和细胞色素C的分离距离为3.5 cm。结论是,PDMS上聚丙烯酰胺链的生长减少了疏水和静电相互作用,从而避免了蛋白质吸附到PDMS微通道的内壁。

著录项

  • 作者

    Xiao, Deqing.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号