首页> 外文学位 >Atomic scale X-ray studies of the electrical double layer structure at the rutile titanium dioxide (110)-aqueous interface.
【24h】

Atomic scale X-ray studies of the electrical double layer structure at the rutile titanium dioxide (110)-aqueous interface.

机译:金红石型二氧化钛(110)-水界面的双电层结构的原子尺度X射线研究。

获取原文
获取原文并翻译 | 示例

摘要

When a metal oxide surface comes in contact with an aqueous solution, an electrical double layer (EDL) is formed at the interface. The EDL region greatly affects many natural and industrial processes. Efforts for more than a century have been put forward to understand the features of the EDL. However, with little atomic scale structural knowledge, the ability is very limited to test current competing models and further understand or predict EDL properties. In this work, the surface and the adsorbate structure at the rutile TiO 2 (110)-aqueous interface is probed with synchrotron based X-rays.; Combining X-ray standing wave (XSW) imaging, which is direct and model independent, with tradition XSW triangulation, precise atom positions and absolute coverages are achieved. Crystal truncation rod (CTR) measurements yield the interfacial structure.; It has been revealed the rutile (110) surface termination and structure and the specifically adsorbed ion locations while contacting with the bulk water. In the aqueous solution, both the bridging (BO) and the terminal oxygen (TO) rows are present and the surface undergoes minimal relaxations. An additional layer of water molecules with well-defined vertical and lateral positions are formed on top of surface oxygen groups. No more water structure is found farther away from the interface. The metal ions, including mono-, di-, and tri-valent ions, are all found to be 'inner sphere' adsorbates at the rutile (110)-aqueous interface. The adsorption location is primarily determined by the ion sizes. The larger ions, like Rb+, Sr 2+, and Y3+, take the tetradentate positions, which are of equal distances to the two TO and BO atoms. Small ions, like Zn 2+, are at the extended bulk Ti positions.; With monovalent ions as the only background electrolytes at concentrations 1 mol/kg, we found that, the adsorbed divalent ions are independent of the type of the background electrolyte and the solution ionic strength; both Zn2+ and Sr2+ ions adsorbed in the condensed layer saturate around 0.4 monolayer; negligible amount of divalent ions are in the diffuse layer; no evidence of surface ternary complexation is observed; and the Gouy-Chapman-Stem model is more appropriate for describing divalent ion distribution in the EDL.
机译:当金属氧化物表面与水溶液接触时,在界面处形成双电层(EDL)。 EDL地区极大地影响了许多自然和工业过程。已经提出了一个多世纪的努力来理解EDL的功能。但是,由于缺乏原子尺度的结构知识,因此该能力非常有限,无法测试当前竞争的模型并进一步了解或预测EDL属性。在这项工作中,用基于同步加速器的X射线探测金红石TiO 2(110)-水界面的表面和吸附物结构。将直接和模型独立的X射线驻波(XSW)成像与传统的XSW三角测量相结合,可以实现精确的原子位置和绝对覆盖率。晶体截断棒(CTR)的测量产生界面结构。已经揭示了金红石(110)表面终止结构和结构以及与大量水接触时特定吸附的离子位置。在水溶液中,同时存在桥连(BO)和末端氧(TO)行,并且表面的松弛最小。在表面氧基团的顶部形成另外一层具有明确定义的垂直和横向位置的水分子。在离界面较远的地方找不到更多的水结构。发现金属离子,包括一价,二价和三价离子,都是在金红石(110)-水界面的“内球”吸附物。吸附位置主要由离子尺寸决定。较大的离子(如Rb +,Sr 2+和Y3 +)占据四齿位置,它们与两个TO和BO原子的距离相等。小离子,如Zn 2+,位于扩展的块体Ti位置。以一价离子作为浓度小于1 mol / kg的唯一背景电解质时,我们发现吸附的二价离子与背景电解质的类型和溶液离子强度无关。冷凝层中吸附的Zn2 +和Sr2 +离子都在0.4单层附近饱和;扩散层中的二价离子量可忽略不计;没有观察到表面三元络合的证据; Gouy-Chapman-Stem模型更适合描述EDL中的二价离子分布。

著录项

  • 作者

    Zhang, Zhan.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 282 p.
  • 总页数 282
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号