首页> 外文学位 >Silicon carbide technology for micro- and nano-electromechanical systems applications.
【24h】

Silicon carbide technology for micro- and nano-electromechanical systems applications.

机译:适用于微和纳米机电系统应用的碳化硅技术。

获取原文
获取原文并翻译 | 示例

摘要

Micro- and nano-electromechanical systems (MEMS and NEMS) have emerged as a technology that integrates miniaturized mechanical structures with microelectronics components mainly for sensing and actuating applications. Silicon carbide (SiC) has gained great attention as both a coating and a structural material for MEMS applications in harsh environments, due to its superior mechanical strength, chemical stability and excellent performance in high-temperature, high-power electronic components. In addition, because of its high acoustic velocity and stable physicochemical properties, SiC is recently recognized as a promising material for fabricating radio frequency (RF) MEMS used as oscillators and filters in RF signal communications. The goal of this work is to realize a manufacturable SiC technology for MEMS applications.; Using a single precursor 1,3-disilabutane (1,3-DSB), we have been able to deposit polycrystalline cubic SiC films on Si and SiO2 substrates by chemical vapor deposition at relatively low temperatures ranging from 750 to 850°C. The SiC films can be in situ doped by introducing NH3 to the precursor 1,3-DSB. The electrical resistivity of SiC films is controlled by properly adjusting the flow rate ratio of NH 3 to 1,3-DSB. Electrical resistivity as low as 26 mO·cm has been achieved for as-deposited SiC films.; Selective dry etch for SiC has been investigated using SF6/O 2, HBr and HBr/Cl2 transformer coupled plasmas. Nonmetallic materials including SiO2 and Si3N4 have been used as masking materials.; The mechanical, electrical and chemical properties of SiC thin films are characterized using the state-of-the-art material characterization technologies, as well as MEMS-based test structures. It is found that the SiC films possess many desirable properties for MEMS applications, such as high Young's modulus, high fracture strength, and low stiction characteristics.; The developed SiC technology is applied to build SiC-based MEMS resonators with resonant frequencies in both audio- and radio-frequency ranges. A 173 MHz SiC Lame-Mode resonator with a quality factor of 9334 in room ambient is demonstrated.; By combining the "bottom-up" and "top-down" approaches in nanofabrication technologies, SiC and Si nanometer-size structures are fabricated. Assembly processes towards the positional and orientational control over these nanostructures have also been explored. These processes lay the groundwork and provide promising approaches for the low-cost batch-fabrication of nanoscale devices including NEMS.
机译:微型和纳米机电系统(MEMS和NEMS)作为一种将微型机械结构与微电子元件集成在一起的技术而出现,主要用于传感和驱动应用。碳化硅(SiC)由于其优异的机械强度,化学稳定性以及在高温,高功率电子元件中的出色性能,在恶劣环境下作为MEMS应用的涂层和结构材料而备受关注。另外,由于其高声速和稳定的理化特性,SiC最近被公认为是一种有前途的材料,可用于制造射频(RF)MEMS,用作射频信号通信中的振荡器和滤波器。这项工作的目标是为MEMS应用实现可制造的SiC技术。使用单一的前体1,3-二硅丁烷(1,3-DSB),我们已经能够在750至850°C的较低温度下通过化学气相沉积法在Si和SiO2基板上沉积多晶立方SiC膜。通过将NH3引入前体1,3-DSB,可以原位掺杂SiC薄膜。通过适当地调整NH 3与1,3-DSB的流量比,可以控制SiC膜的电阻率。沉积的SiC薄膜的电阻率低至26 mO·cm。已经使用SF6 / O 2,HBr和HBr / Cl2变压​​器耦合等离子体研究了SiC的选择性干法蚀刻。包括SiO2和Si3N4的非金属材料已被用作掩膜材料。 SiC薄膜的机械,电和化学性质使用最新的材料表征技术以及基于MEMS的测试结构来表征。已经发现,SiC膜具有许多MEMS应用所需的特性,例如高杨氏模量,高断裂强度和低静摩擦特性。所开发的SiC技术被用于构建基于SiC的MEMS谐振器,其谐振频率在音频和射频范围内。演示了在室内环境下质量因子为9334的173 MHz SiC Lame-Mode谐振器。通过结合纳米制造技术中的“自下而上”和“自上而下”的方法,可以制造出SiC和Si纳米尺寸的结构。还已经探索了对这些纳米结构进行位置和方向控制的组装过程。这些工艺奠定了基础,并为低成本批量制造包括NEMS的纳米器件提供了有希望的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号