首页> 外文学位 >Predictive models for the edge of tokamak H-mode plasmas.
【24h】

Predictive models for the edge of tokamak H-mode plasmas.

机译:托卡马克H型等离子体边缘的预测模型。

获取原文
获取原文并翻译 | 示例

摘要

High confinement (H-mode) discharges in tokamak experiments are characterized by a narrow region of steep pressure gradient called the "pedestal" that forms at the edge of the plasma, and often by an instability called an "Edge Localized Mode (ELM)" that periodically removes energy and particles from the edge of the plasma. The parameters at the top of the pedestal and the characteristics of ELMs have a strong influence on the performance of H-mode discharges. In this study, models for the pedestal are developed initially without including the effects of ELMs. The predictions from these pedestal models yield reasonable agreement with experimental data. These pedestal models are then used to provide boundary conditions in an integrated modeling code in order to simulate plasma profiles, such as temperature and density profiles, in existing H-mode experiments. The simulated profiles obtained using predictive boundary conditions and those obtained using experimental boundary conditions have similar agreement with experimental profiles. A more advanced pedestal model with a dynamic model for ELM crashes is developed using a concept of turbulence suppression at the edge of plasma. These pedestal and ELM models are coupled with a core transport model in an integrated modeling code. An advantage of this approach is that it allows for the evolution of plasma pressure and current profiles in the pedestal region, which can lead to an instability that triggers ELM crashes that limit the growth of the pedestal. Pressure-driven ballooning and current-driven peeling instabilities are considered as the possible instabilities that trigger ELM crashes. The combined core and pedestal models, with the effect of ELMs included, are used to study the dependence of triangularity and heating power on the pedestal. An MHD stability analysis is also performed to confirm the validity of these simulations. It is found that plasma edge stability improves as triangularity increases, as a result of access to the second stability region of ballooning modes. Finally, simulations yield a pedestal height with a dependence on heating power similar to that observed experimentally when the ELM crash model is extended to include ELMS triggered by current-driven peeling instabilities.
机译:托卡马克实验中的高限制(H-模式)放电的特征是在等离子体边缘形成的陡峭压力梯度狭窄区域(称为“基座”),并且通常具有称为“边缘局部模式(ELM)”的不稳定性。周期性地从等离子体边缘去除能量和粒子。基座顶部的参数和ELM的特性对H型放电的性能有很大的影响。在这项研究中,最初开发的基座模型不包括ELM的影响。这些基座模型的预测与实验数据产生了合理的一致性。然后,这些基座模型用于在集成建模代码中提供边界条件,以便在现有的H模式实验中模拟等离子体轮廓,例如温度和密度轮廓。使用预测性边界条件获得的模拟轮廓和使用实验性边界条件获得的模拟轮廓与实验轮廓具有相似的一致性。使用等离子边缘的湍流抑制概念,开发了具有ELM碰撞动态模型的更先进的基座模型。这些基座和ELM模型在集成的建模代码中与核心传输模型耦合。这种方法的优势在于,它允许在基座区域内产生等离子压力和电流分布,这会导致不稳定,从而触发ELM崩溃,从而限制了基座的生长。压力驱动的膨胀和电流驱动的剥离不稳定性被认为是触发ELM崩溃的可能不稳定性。结合了ELM效应的核心和基座组合模型用于研究三角形和加热功率对基座的依赖性。还进行了MHD稳定性分析,以确认这些模拟的有效性。已经发现,由于接近膨胀模式的第二稳定区域,等离子体边缘稳定性随着三角形度的增加而提高。最后,模拟产生的基座高度与加热功率有关,与ELM碰撞模型扩展为包括由电流驱动的剥离不稳定性触发的ELMS时的实验观察到的相似。

著录项

  • 作者

    Onjun, Thawatchai.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号