首页> 外文学位 >Topology Optimization for Multi-Functional Components in Multibody Dynamics Systems.
【24h】

Topology Optimization for Multi-Functional Components in Multibody Dynamics Systems.

机译:多体动力学系统中多功能组件的拓扑优化。

获取原文
获取原文并翻译 | 示例

摘要

This research extends topology optimization techniques to consider multibody dynamics systems with a much more open design space, which can include passive, active, and reactive components, with a special application focus on a gunner restraint system (GRS) design problem. General representative models for the multifunctional components arc established in a multibody dynamics system. The topology optimization process has been advanced for the optimization of geometrically nonlinear, time-dependent, and timing-dependent multibody dynamics systems undergoing large nonlinear displacements with nonlinear dynamics responses as design objectives. Three efficient sensitivity analysis methods have been proposed, which include the constant dynamic loading method, the time integration incorporated method based on the Generalized-a algorithm and the iterative method. These new methods have made it possible to calculate the sensitivities in complicated multibody dynamic systems and provide users with choices to significantly reduce the computational costs, especially, in the topology optimization process, and to obtain desired accuracy in the sensitivity analysis. In addition to the sensitivity analysis methods, an efficient and reliable Kriging variable screening method based on the REML criterion has been developed to identify significant variables in the systems to determine the worst cases for various system uncertainty studies.;A specific application of the multi-functional components system optimization technology is the GRS design problem, in which both the vehicle and the gunner can undergo large relative and absolute motions under various driving or threat conditions. In meanwhile, the restraint components may need to allow amplitude-dependent, time-dependent, timing-dependent nonlinear response behaviors, such as those seeing in restraint belts, airbags, and retractors. The restraint system layout design needs to keep a wide open design space, thus to find the truly optimal design. The developed methodologies have been employed in the GRS design problems to demonstrate usage of the new methodologies.
机译:这项研究扩展了拓扑优化技术,以考虑具有更大开放性设计空间的多体动力学系统,其中可以包括无源,有源和无功组件,并且特别着重于炮手约束系统(GRS)设计问题。在多体动力学系统中建立了多功能部件的通用代表模型。拓扑优化过程已经进行了优化,以优化几何非线性,时间相关和时序相关的多体动力学系统,该系统经历大的非线性位移并以非线性动力学响应为设计目标。提出了三种有效的灵敏度分析方法,包括恒定动态加载方法,基于Generalized-a算法的时间积分合并方法和迭代方法。这些新方法使计算复杂的多体动力学系统中的灵敏度成为可能,并为用户提供了显着降低计算成本(尤其是在拓扑优化过程中)并在灵敏度分析中获得所需精度的选择。除灵敏度分析方法外,还开发了一种基于REML标准的有效而可靠的Kriging变量筛选方法,以识别系统中的重要变量,以确定各种系统不确定性研究的最坏情况。功能部件系统优化技术是GRS的设计问题,在这种情况下,车辆和炮手在各种驾驶或威胁条件下都可能经历较大的相对和绝对运动。同时,约束组件可能需要允许振幅依赖,时间依赖,时序依赖的非线性响应行为,例如在约束带,安全气囊和牵开器中看到的行为。约束系统的布局设计需要保持广阔的设计空间,从而找到真正的最佳设计。在GRS设计问题中采用了已开发的方法论,以证明新方法论的使用。

著录项

  • 作者

    Dong, Guang.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号