首页> 外文学位 >Mitofusin 2 Regulated Transport of Mitochondria is Necessary for Axonal Integrity.
【24h】

Mitofusin 2 Regulated Transport of Mitochondria is Necessary for Axonal Integrity.

机译:线粒体2调节线粒体运输是轴突完整性所必需的。

获取原文
获取原文并翻译 | 示例

摘要

The ubiquitous finding of axonal degeneration in a number of the most prevalent neuropathologies marks the importance of understanding axonal biology and the axonal self-destruct mechanism. Though our understanding of axonal degeneration remains largely incomplete, several down-steam steps of the molecular cascade have been elucidated. While this insight has emerged from models of axon degeneration following physical injury or toxic insult, a more comprehensive understanding of the upstream events may be gained from studying primary axonopathies with defined genetic causes.;This dissertation aims to elucidate a molecular mechanism underlying the loss of axons in Charcot-Marie-Tooth Disease type 2A, which is caused by mutations in the mitofusin 2 (MFN2) gene. Utilizing an in vitro culture system, we find that CMT2A associated MFN2 mutants disrupt the transport of axonal mitochondria in DRG neurons. Though MFN2 has a previously defined role in facilitating mitochondrial fusion, we propose a direct role for MFN2 in mediating transport based on its interaction with key components of the mitochondrial transport apparatus and perturbation of transport in MFN2 null DRG neurons. MFN2 does not provide a direct link between mitochondria and microtubule based motors, but is poised to mediate transport by a still undefined mechanism. The ability of MFN2 to mediate transport is separate from its ability to mediate fusion as MFN2 disease mutants, that have been shown to retain their ability to fuse mitochondria, cannot rescue the transport deficit in MFN2 null neurons. Additionally, loss of mitochondrial fusion by knockdown of opa-1 is not sufficient to disrupt mitochondrial transport despite reduced mitochondrial function. These findings may explain why mutations in or haplo-insufficiency of opa-1 leads to Dominant Optic Atrophy (DOA) but not degeneration of long peripheral axons, highlighting the potential importance of mitochondrial transport for axon integrity.;To further test our hypothesis that mitochondrial transport is critical for the integrity of axons, we expressed MFN2 mutants in cultured DRG neurons and looked for signs of degenerating axons. High levels of Ca2+ or reactive oxygen species (ROS) delineated a population of degenerating axons that we not observed in opa-1 knock down cultures. Mitochondria in MFN2 mutant expressing cells showed little change in membrane potential compared to a significant change in the mitochondrial membrane potential of opa-1 silenced cells; however, both groups of cultured neurons upregulated glycolysis and were sensitive to treatment with 2DG. We hypothesize that these changes in the MFN2 mutant expressing cells could be explained by lack of mitochondrial flux across segments of axon which must resort to use of glycolysis. The absence of mitochondria could cause segments of axon to become vulnerable to local perturbations in energy or Ca2+ levels and explain the axonal degeneration observed in culture. In this way, disrupted redistribution of mitochondria in CMT2A patients would put the longest axons at the highest risk due to the probability of incurring at least one insult along its length for which mitochondria could not compensate.;Finally we attempted to study an animal model of CMT2A to see if our in vitro findings we recapitulated in vivo. To this end we obtained a mouse line in which the R94Q mutation had been knocked in to the endogenous allele. To accurately mirror conditions in CMT2A patients we chose to analyze heterozygous mice. Though homozygous mice die by the third postnatal week, heterozygous mice are phenotypically normal showing no signs of axon loss or muscle denervation. Differential expression of the MFN2 homologue MFN1, absolute length of axons or absolute time to disease may account for the discrepancy between the mouse model and human patients. Hopefully this work will help elucidate the molecular mechanisms underlying CMT2A and contribute toward a more general understanding of why axons degenerate.
机译:在许多最流行的神经病理学中普遍存在轴突变性的发现,标志着理解轴突生物学和轴突自毁机制的重要性。尽管我们对轴突变性的理解仍然不完全,但是已经阐明了分子级联反应的几个下游步骤。虽然这种见解是从人身伤害或中毒后轴突变性的模型中得出的,但通过研究具有明确遗传原因的原发性轴索病可以对上游事件有更全面的了解。本论文旨在阐明潜在的轴突变性分子机制。 Charcot-Marie-Tooth疾病2A型中的轴突是由线粒体融合蛋白2(MFN2)基因的突变引起的。利用体外培养系统,我们发现CMT2A相关的MFN2突变体破坏了DRG神经元中轴突线粒体的运输。虽然MFN2在促进线粒体融合中具有先前定义的作用,但我们基于MFN2与线粒体转运装置的关键成分的相互作用以及MFN2空DRG神经元中转运的扰动,提出了MFN2在介导转运中的直接作用。 MFN2不会在线粒体和基于微管的马达之间提供直接联系,但有望通过一种仍不确定的机制来介导运输。 MFN2介导运输的能力与其介导融合的能力是分开的,因为已显示保留其融合线粒体能力的MFN2疾病突变体无法挽救MFN2无效神经元的运输缺陷。此外,尽管线粒体功能降低,但通过敲除opa-1导致的线粒体融合丧失不足以破坏线粒体运输。这些发现可能可以解释为什么opa-1突变或单倍不足会导致显性视神经萎缩(DOA)但不会导致长周围轴突变性,从而突显了线粒体运输对轴突完整性的潜在重要性。;进一步检验我们的线粒体假说转运对于轴突的完整性至关重要,我们在培养的DRG神经元中表达了MFN2突变体,并寻找了轴突变性的迹象。高水平的Ca2 +或活性氧(ROS)勾画出了我们在opa-1敲除培养物中未观察到的变性轴突种群。与opa-1沉默细胞的线粒体膜电位的显着变化相比,表达MFN2突变体的细胞中的线粒体膜电位变化很小。然而,两组培养的神经元均上调了糖酵解,并且对2DG治疗敏感。我们假设表达MFN2突变的细胞中的这些变化可以解释为缺乏轴突片段之间的线粒体通量,这必须诉诸于糖酵解。线粒体的缺乏可能导致轴突部分容易受到能量或Ca2 +水平的局部扰动,并解释了在培养物中观察到的轴突变性。这样一来,由于CMT2A患者中线粒体的重新分布受到干扰,最长的轴突将处于最高风险,这是因为沿线粒体的长度方向上可能遭受至少一次侮辱,而线粒体无法对其进行补偿;最后,我们试图研究一种线粒体的动物模型。 CMT2A,看看我们的体外发现是否在体内得以概括。为此,我们获得了其中R94Q突变已敲入内源等位基因的小鼠系。为了准确反映CMT2A患者的病情,我们选择分析杂合小鼠。尽管纯合小鼠在出生后第三周死亡,但杂合小鼠在表型上是正常的,没有轴突丢失或肌肉神经支配的迹象。 MFN2同源物MFN1的差异表达,轴突的绝对长度或疾病的绝对时间可能是小鼠模型与人类患者之间差异的原因。希望这项工作将有助于阐明CMT2A的分子机制,并有助于更广泛地了解轴突变性的原因。

著录项

  • 作者

    Misko, Albert Lawrence.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Biology Neuroscience.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号