首页> 外文学位 >Nanocrystalline silicon thin film transistors on plastic substrates.
【24h】

Nanocrystalline silicon thin film transistors on plastic substrates.

机译:塑料基板上的纳米晶硅薄膜晶体管。

获取原文
获取原文并翻译 | 示例

摘要

This thesis gives an overview of material and device research involving nanocrystalline silicon (nc-Si:H) for thin film transistors (TFTs) on organic polymer foil substrates. Among the several alternatives for semiconductor transistor back planes, nc-Si:H is pursued because of its potential advantages. These include a higher carrier mobility than hydrogenated amorphous silicon (a-Si:H), which makes nc-Si:H capable of complementary metal-oxide-semiconductor (CMOS) operation. nc-Si:H is compatible with organic polymer (plastic) substrates, is more uniform than polycrystalline Si made by excimer laser annealing, and, most importantly, it can be made with techniques and equipment that are compatible with the well-established technology for a-Si:H.; The nc-Si:H films were deposited by plasma enhanced chemical vapor deposition (PECVD) at substrate temperatures of 280°C to 150°C, which are considered ultra-low for conventional semiconductor technology. The structural properties, electrical properties and the chemical composition of nc-Si:H films were characterized by UV reflectance, scanning electron microscopy, atomic force microscopy, electrical conductivity, and secondary ion mass spectrometry. To raise the high field effect mobility and reduce the OFF current, the TFT channel layer of intrinsic nc-Si:H was deposited from source gases containing chlorine, at an excitation frequency of 80 MHz. While satisfactory properties were obtained for nc-Si:H, the deposition of the gate dielectric of ultra-low temperature remains an open challenge. Various dielectrics were investigated. Several pre- and post-deposition treatments were performed to improve their interface and bulk quality. Four different device geometries and associated fabrication steps were studied to maximize TFT performance while maintaining wide process windows. Both p-channel and n-channel nc-Si:H TFTs were made and integrated monolithically on glass and on Kapton E polyimide substrates. An electron field-effect mobility of ∼40 cm2V−1s −1 and a hole mobility of ∼0.35 cm2V −1s−1 were obtained, and inverters made by monolithically integrated p- and n-channel TFTs were demonstrated. But the high threshold voltages, gate leakage currents and drift observed in the TFT characteristics, and the large offset between the output voltage and the supplied HIGH voltage found in the inverter characteristics highlight the need for improving the gate dielectric and p+ contact. It is expected that after improvement of the gate dielectric and the p+ contact deposited at ultra-low temperature, directly deposited nc-Si:H circuits on plastic substrate will be available for flexible transistor back planes.
机译:本文概述了涉及用于有机聚合物箔基板上的薄膜晶体管(TFT)的纳米晶体硅(nc-Si:H)的材料和器件研究。在半导体晶体管底板的几种替代方案中,由于其潜在的优势而一直追求nc-Si:H。这些包括比氢化非晶硅(a-Si:H)更高的载流子迁移率,这使nc-Si:H能够进行互补金属氧化物半导体(CMOS)操作。 nc-Si:H与有机聚合物(塑料)基板兼容,比受激准分子激光退火制得的多晶硅更均匀,最重要的是,它可以通过与成熟技术兼容的技术和设备来制造a-Si:H .; nc-Si:H薄膜是通过等离子增强化学气相沉积(PECVD)在280°C至150°C的基板温度下沉积的,对于传统的半导体技术来说,这是极低的温度。通过紫外反射率,扫描电子显微镜,原子力显微镜,电导率和二次离子质谱分析对nc-Si:H薄膜的结构性能,电性能和化学组成进行了表征。为了提高高场效应迁移率并减小截止电流,本征nc-Si:H的TFT沟道层是从含氯的源气体中以80 MHz的激发频率沉积的。尽管获得了nc-Si:H令人满意的性能,但超低温栅极电介质的沉积仍然是一个挑战。研究了各种电介质。进行了一些沉积前和沉积后处理,以改善其界面和整体质量。研究了四种不同的器件几何形状和相关的制造步骤,以在保持宽工艺窗口的同时最大化TFT性能。制作了p沟道和n沟道nc-Si:H TFT,并将它们单片集成在玻璃和Kapton E聚酰亚胺基板上。电子场效应迁移率约为40 cm 2 V -1 s -1 ,空穴迁移率约为0.35 cm 2获得 V -1 s -1 ,并演示了由单片集成的p沟道和n沟道TFT制造的反相器。但是,在TFT特性中观察到高阈值电压,栅极泄漏电流和漂移,以及在反相器特性中发现的输出电压和所提供的HIGH电压之间的大偏移,凸显了需要改善栅极电介质和p + < / super>联系人。可以预期,在改善栅极电介质和在超低温下沉积的p + 触点之后,在塑料衬底上直接沉积的nc-Si:H电路将可用于柔性晶体管背板。

著录项

  • 作者

    Cheng, I-Chun.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号