首页> 外文学位 >Through-silicon-via-aware prediction and physical design for multi-granularity 3D integrated circuits.
【24h】

Through-silicon-via-aware prediction and physical design for multi-granularity 3D integrated circuits.

机译:多粒度3D集成电路的全硅通孔预测和物理设计。

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this research is to predict the wirelength, area, delay, and power of multi-granularity three-dimensional integrated circuits (3D ICs), to develop physical design methodologies and algorithms for the design of multi-granularity 3D ICs, and to investigate the impact of through-silicon vias (TSVs) on the quality of 3D ICs. This dissertation supports these objectives by addressing six research topics. The first pertains to analytical models that predict the interconnects of multi-granularity 3D ICs, and the second focuses on the development of analytical models of the capacitive coupling of TSVs. The third and the fourth topics present design methodologies and algorithms for the design of gate- and block-level 3D ICs, and the fifth topic pertains to the impact of TSVs on the quality of 3D ICs. The final topic addresses topography variation in 3D ICs.;The first section of this dissertation presents TSV-aware interconnect prediction models for multi-granularity 3D ICs. As previous interconnect prediction models for 3D ICs did not take TSV area into account, they were not capable of predicting many important characteristics of 3D ICs related to TSVs. This section will present several previous interconnect prediction models that have been improved so that the area occupied by TSVs is taken into account. The new models show numerous important predictions such as the existence of the number of TSVs minimizing wirelength.;The second section presents fast estimation of capacitive coupling of TSVs and wires. Since TSV-to-TSV and TSV-to-wire coupling capacitance is dependent on their relative locations, fast estimation of the coupling capacitance of a TSV is essential for the timing optimization of 3D ICs. Simulation results show that the analytical models presented in this section are sufficiently accurate for use at various design steps that require the computation of TSV capacitance.;The third and fourth sections present design methodologies and algorithms for gate- and block-level 3D ICs. One of the biggest differences in the design of 2D and 3D ICs is that the latter requires TSV insertion. Since no widely-accepted design methodology designates when, where, and how TSVs are inserted, this work develops and presents several design methodologies for gate- and block-level 3D ICs and physical design algorithms supporting them. Simulation results based on GDSII-level layouts validate the design methodologies and present evidence of their effectiveness.;The fifth section explores the impact of TSVs on the quality of 3D ICs. As TSVs become smaller, devices are shrinking, too. Since the relative size of TSVs and devices is more critical to the quality of 3D ICs than the absolute size of TSVs and devices, TSVs and devices should be taken into account in the study of the impact of TSVs on the quality of 3D ICs. In this section, current and future TSVs and devices are combined to produce 3D IC layouts and the impact of TSVs on the quality of 3D ICs is investigated.;The final section investigates topography variation in 3D ICs. Since landing pads fabricated in the bottommost metal layer are attached to TSVs, they are larger than TSVs, so they could result in serious topography variation. Therefore, topography variation, especially in the bottommost metal layer, is investigated and two layout optimization techniques are applied to a global placement algorithm that minimizes the topography variation of the bottommost metal layer of 3D ICs. xix.
机译:这项研究的主要目的是预测多粒度3D集成电路(3D IC)的线长,面积,延迟和功率,开发用于设计多粒度3D IC的物理设计方法和算法,以及研究硅通孔(TSV)对3D IC质量的影响。本文通过解决六个研究课题来支持这些目标。第一个涉及预测多粒度3D IC互连的分析模型,第二个关注于TSV电容耦合分析模型的开发。第三个和第四个主题介绍了用于门级和块级3D IC设计的设计方法和算法,第五个主题涉及TSV对3D IC质量的影响。最后一个主题是3D IC的形貌变化。本文的第一部分介绍了TSV感知的多粒度3D IC互连预测模型。由于先前的3D IC互连预测模型没有考虑TSV面积,因此它们无法预测与TSV相关的3D IC的许多重要特性。本节将介绍一些以前的互连预测模型,这些模型已得到改进,以便考虑到TSV占据的面积。新模型显示了许多重要的预测,例如最小化TSV的TSV的存在。第二部分介绍了TSV和导线的电容耦合的快速估计。由于TSV到TSV和TSV到导线的耦合电容取决于它们的相对位置,因此快速估计TSV的耦合电容对于3D IC的时序优化至关重要。仿真结果表明,本节介绍的分析模型足够准确,可用于需要计算TSV电容的各个设计步骤。第三和第四节介绍了门级和块级3D IC的设计方法和算法。 2D和3D IC设计的最大区别之一是后者需要插入TSV。由于尚无广泛接受的设计方法指定何时,何处以及如何插入TSV,因此这项工作开发并提出了门级和块级3D IC的几种设计方法以及支持它们的物理设计算法。基于GDSII级别布局的仿真结果验证了设计方法并提供了其有效性的证据。第五部分探讨了TSV对3D IC质量的影响。随着TSV变得越来越小,设备也在缩小。由于TSV和器件的相对尺寸对于3D IC的质量比TSV和器件的绝对尺寸更为关键,因此在研究TSV对3D IC的质量影响时应考虑TSV和器件。在本节中,将当前和将来的TSV和器件组合在一起以产生3D IC布局,并研究TSV对3D IC的质量的影响。最后一部分研究3D IC的形貌变化。由于在最底层金属层中制造的着陆焊盘已附着到TSV,因此它们比TSV大,因此它们可能导致严重的形貌变化。因此,研究了地形变化,特别是最底层金属层的拓扑变化,并将两种布局优化技术应用于全局布局算法,该算法使3D IC的最底层金属层的拓扑变化最小。 xix。

著录项

  • 作者

    Kim, Dae Hyun.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号