首页> 外文学位 >Characterization of mesoscopic fluid-like films with the novel shear-force/acoustic microscopy.
【24h】

Characterization of mesoscopic fluid-like films with the novel shear-force/acoustic microscopy.

机译:用新型剪切力/声学显微镜表征介观流体状薄膜。

获取原文
获取原文并翻译 | 示例

摘要

The shear force mechanism has been utilized as a distance regulation method in scanning probe microscopes. However, the origin of shear force is still unclear. One of the most important reasons for the shear-force damping is due to the presence of a water contamination layer at the sample surface in ambient conditions. Understanding the behavior of such mesoscopic fluid-like films is of significance for studies of not only scanning probe microscopy but also other complex surface phenomena, such as nanotribology, lubrication, adhesion, wetting, and the microfluidity of biological membranes. This thesis investigates, in particular, the dynamics of mesoscopic fluids confined between two sliding solid boundaries. When fluids are constrained to nanometer-sized regions, their physical properties can greatly differ from those displayed by bulk liquids. To gain an insight into the fundamental characteristics of the confined fluid films, we exploit the versatile capabilities of the novel shear-force/acoustic near-field microscope (SANM), which is able to concurrently and independently monitor the effects of the fluid-mediated interactions acting on both the microscope's probe and the sample to be analyzed. Two signals are monitored simultaneously during each experimental cycle: the tuning fork signal, which is the oscillation amplitude of the probe and gives access to the shear force; and acoustic signal, which is detected by an acoustic sensor placed under the sample. Systematic experiments are carried out to investigate the effects of probe geometry, environmental humidity, and chemical properties of probe and sample surface (water affinity: hydrophobicity or hydrophilicity) on the probe-sample interactions, expressing the influence of the fluid-like contamination films.
机译:剪切力机制已被用作扫描探针显微镜中的距离调节方法。但是,剪切力的来源仍不清楚。剪切力衰减的最重要原因之一是由于在环境条件下样品表面上存在水污染层。不仅要研究扫描探针显微镜,而且要研究其他复杂的表面现象,例如纳米摩擦学,润滑性,粘附性,润湿性和生物膜的微流体性,了解此类介观性流体状膜的行为具有重要意义。本论文特别研究了限制在两个滑动固体边界之间的介观流体的动力学。当流体被限制在纳米大小的区域时,它们的物理特性可能与散装液体所显示的物理特性有很大的不同。为了深入了解受限流体膜的基本特性,我们利用了新型剪切力/声学近场显微镜(SANM)的多功能功能,该功能能够同时并独立地监视流体介导的效应相互作用同时作用于显微镜的探头和待分析的样品。在每个实验周期中,将同时监视两个信号:音叉信号,该信号是探头的振荡幅度,可用来获取剪切力。声音信号,该声音信号由放置在样品下面的声音传感器检测到。进行了系统的实验,研究了探针几何形状,环境湿度以及探针和样品表面的化学性质(水亲和力:疏水性或亲水性)对探针-样品相互作用的影响,表达了流体样污染膜的影响。

著录项

  • 作者

    Wang, Xiaohua.;

  • 作者单位

    Portland State University.;

  • 授予单位 Portland State University.;
  • 学科 Physics Optics.
  • 学位 M.S.
  • 年度 2010
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号