首页> 外文学位 >Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design.
【24h】

Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design.

机译:光子设计:从基本的太阳能电池物理到计算逆设计。

获取原文
获取原文并翻译 | 示例

摘要

Photonic innovation is becoming ever more important in the modern world. Optical systems are dominating shorter and shorter communications distances, LED's are rapidly emerging for a variety of applications, and solar cells show potential to be a mainstream technology in the energy space. The need for novel, energy-efficient photonic and optoelectronic devices will only increase. This work unites fundamental physics and a novel computational inverse design approach towards such innovation.;The first half of the dissertation is devoted to the physics of high-efficiency solar cells. As solar cells approach fundamental efficiency limits, their internal physics transforms. Photonic considerations, instead of electronic ones, are the key to reaching the highest voltages and efficiencies. Proper photon management led to Alta Device's recent dramatic increase of the solar cell efficiency record to 28.3%. Moreover, approaching the Shockley-Queisser limit for any solar cell technology will require light extraction to become a part of all future designs.;The second half of the dissertation introduces inverse design as a new computational paradigm in photonics. An assortment of techniques (FDTD, FEM, etc.) have enabled quick and accurate simulation of the "forward problem" of finding fields for a given geometry. However, scientists and engineers are typically more interested in the inverse problem: for a desired functionality, what geometry is needed? Answering this question breaks from the emphasis on the forward problem and forges a new path in computational photonics. The framework of shape calculus enables one to quickly find superior, non-intuitive designs. Novel designs for optical cloaking and sub-wavelength solar cell applications are presented.
机译:光子创新在现代世界中变得越来越重要。光学系统在越来越短的通信距离中占主导地位,LED在各种应用中迅速兴起,太阳能电池显示出成为能源领域主流技术的潜力。对新颖,节能的光子和光电器件的需求只会增加。这项工作将基础物理学与一种新颖的计算逆设计方法相结合,以实现这一创新。论文的前半部分致力于高效太阳能电池的物理学。随着太阳能电池接近基本效率极限,它们的内部物理原理发生了变化。光子考量而非电子考量是达到最高电压和效率的关键。正确的光子管理导致Alta Device最近将太阳能电池效率记录大幅提高到28.3%。此外,接近任何太阳能电池技术的Shockley-Queisser极限将要求光提取成为所有未来设计的一部分。论文的第二部分介绍了逆设计作为光子学的一种新的计算范式。各种各样的技术(FDTD,FEM等)使得能够快速准确地模拟查找给定几何形状的场的“前向问题”。但是,科学家和工程师通常对逆问题更感兴趣:对于所需的功能,需要什么几何形状?回答这个问题将打破对前向问题的重视,并为计算光子学开辟一条新的道路。形状演算的框架使人们能够快速找到出色的,非直觉的设计。提出了用于光学掩盖和亚波长太阳能电池应用的新颖设计。

著录项

  • 作者

    Miller, Owen Dennis.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Alternative Energy.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号