首页> 外文学位 >The Development of Biomedical Devices with Excimer Laser Micromachining, Modeling and Simulations.
【24h】

The Development of Biomedical Devices with Excimer Laser Micromachining, Modeling and Simulations.

机译:利用准分子激光微加工,建模和仿真技术开发生物医学设备。

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new method of developing micro-scale medical devices by using excimer laser with analytical modeling and simulation of the processes. In recent years, The laser has attracted a significant interest of finding feasible techniques for developing new biomedical devices such as micro scaffolds for nerves, micro arrays for DNA, micro channels for drug delivery or bio-MEMS for bioelectronics devices. This paper focuses on exploring the applications of laser micromachining and advanced surface modification techniques for the development of the biomedical devices. Analytical modeling was conducted and constructed for laser micromachining processes such as pulse laser deposition, 3D material printing and spin coating to fabricate user-defined microstructures on a silicon wafer. Because laser micromachining with the excimer laser is a flexible and controllable process that has high resolution and contactless cutting, it is a good candidate to machine the silicon wafer that is hard, brittle and biocompatible as well as difficult to be machined by other traditional machining methods. The laser micromachining is complex and depends on the interaction of laser energy, material properties and the beam delivery system that has several parameters and need to be investigated before the actual operation so this research began with the study of laser process parameters relating to the laser ablation on a silicon wafer such as laser energy, spot size, working plane, feed rate of XYZ translation stage and number of pass. From the study, the shape of laser ablation was measured and used as the cutting profile of a laser machine tool.;To support the users at the design stage of biomedical devices, the 3D analytical model of laser ablation is essential to predict the microstructure virtually in CAD/CAM system. There are many researches developing their models to simulate the laser ablation for micromachining but there are errors in the simulation of laser phenomenon because it depends on their assumptions and methods used to formulate the model. Therefore, this research proposed the better analytical model to calculate the laser cutting profile from the essential laser process parameters and material properties studied from the fundamental study. The analytical model starting from laser energy profile, modified beam propagation with Gaussian function and laser ablation modeling with cutting angle reduced the laser-machined surface errors compared to the previous work. Moreover, the model was further applied in the computer simulation of laser micromachining to get the optimal laser process parameters for minimal surface roughness. It demonstrated that this model is a great tool for engineer to design and develop the biomedical devices.;When the device meets the functional requirement, it does not mean that it can be used as a biomedical device because the quality and biocompatibility are other crucial factors in the biomedical device development. This research also proposes the surface modification techniques to improve the surface quality and biocompatibility of machined substrate. The improvement on quality of laser ablation by using the cyanoacrylate is proposed to protect the falling debris on the substrate while the diamond-like carbon coating with PLD and polyethylene glycol with UV lithography are introduced to reduce the protein adsorption on the laser-machined area. Moreover, the technique to detect the fluorescent protein adsorption by using the fluorescent spectrophotometer is proposed to quantitatively measure the amount of albumin on the substrate. All proposed methods make the micro devices fabricated from the laser micromachining become more feasible in the biomedical device applications. In conclusion, the techniques presented in this paper provide the essential tools of laser micromachining on a silicon substrate for developing and prototyping biomedical devices. In this paper, the presented new method can be used in modeling and applying excimer laser in design, planning and fabrication of micro-scale biomedical devices.
机译:本文提出了一种利用准分子激光进行分析建模和过程仿真的开发微型医疗设备的新方法。近年来,激光已经吸引了极大的兴趣,寻找用于开发新的生物医学设备的可行技术,例如用于神经的微支架,用于DNA的微阵列,用于药物输送的微通道或用于生物电子设备的生物MEMS。本文着重探讨激光微加工和先进的表面改性技术在生物医学设备开发中的应用。针对激光微加工工艺(例如脉冲激光沉积,3D材料打印和旋涂)进行了分析建模,以在硅晶片上制造用户定义的微结构。由于用准分子激光器进行激光微加工是一种灵活且可控的过程,具有高分辨率和非接触式切割,因此,它是加工坚硬,易碎且具有生物相容性以及难以通过其他传统加工方法加工的硅片的理想选择。激光微加工非常复杂,取决于激光能量,材料特性和光束传输系统之间的相互作用,该系统具有多个参数,在实际操作之前需要进行研究,因此本研究从研究与激光烧蚀相关的激光工艺参数开始在硅晶片上的激光能量,光斑尺寸,工作平面,XYZ平移台的进给速度和通过次数。通过研究,测量了激光烧蚀的形状并将其用作激光机床的切削轮廓。为了在生物医学设备的设计阶段为用户提供支持,激光烧蚀的3D分析模型对于虚拟地预测微观结构至关重要在CAD / CAM系统中。有许多研究开发他们的模型以模拟用于微加工的激光烧蚀,但是在模拟激光现象时存在错误,因为这取决于他们的假设和用于建模的方法。因此,本研究提出了一种更好的分析模型,可以根据基础研究中的基本激光工艺参数和材料特性来计算激光切割轮廓。与以前的工作相比,该分析模型从激光能量分布,具有高斯函数的改进光束传播以及具有切削角度的激光烧蚀模型开始,减少了激光加工的表面误差。此外,该模型还被应用到激光微加工的计算机仿真中,以获得最小表面粗糙度的最佳激光工艺参数。这表明该模型是工程师设计和开发生物医学设备的绝佳工具。;当设备满足功能要求时,并不意味着它可以用作生物医学设备,因为质量和生物相容性是其他关键因素在生物医学设备开发中。这项研究还提出了表面改性技术,以提高机械加工基材的表面质量和生物相容性。提出了通过使用氰基丙烯酸酯来改善激光烧蚀质量的方法,以保护掉落在基材上的碎屑,同时引入了采用PLD的类金刚石碳涂层和采用UV光刻技术的聚乙二醇,以减少蛋白质在激光加工区域的吸附。此外,提出了一种使用荧光分光光度计检测荧光蛋白吸附的技术,以定量测量基质上白蛋白的量。所有提出的方法使由激光微机械加工制造的微器件在生物医学器件应用中变得更加可行。总之,本文介绍的技术提供了在硅基板上进行激光微加工以开发和原型化生物医学设备的基本工具。本文提出的新方法可用于准分子激光的建模和应用在微型生物医学设备的设计,规划和制造中。

著录项

  • 作者

    Wongwiwat, Plawut.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Biomedical.;Nanotechnology.;Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号