首页> 外文学位 >Galactic Cosmic Ray Modulation in the Global Heliosphere.
【24h】

Galactic Cosmic Ray Modulation in the Global Heliosphere.

机译:全球太阳圈中的银河系宇宙射线调制。

获取原文
获取原文并翻译 | 示例

摘要

To understand the behavior of cosmic ray modulation seen by two Voyager spacecraft in the region near termination shock (TS) and heliosheath at distances of >∼ 100 AU, a realistic MagnetoHydroDynamic (MHD) global heliosphere model is incorporated into the cosmic ray transport code, so that the detailed effects of heliospheric boundaries and its plasma/magnetic geometry can be revealed. A number of simulations of cosmic ray modulation with this code reach the following conclusions. (1) Diffusive shock acceleration (DSA) by the TS can significantly affect the level of cosmic ray flux and in particular its radial gradient profile in the region near the TS and in the inner heliosheath. With the effect of acceleration, cosmic ray radial flux shows an enhancement approximately in the TS region, resulting in a difference in radial gradient of cosmic ray flux across the TS. The change of radial gradient does not occur exactly at the TS radial distance in the same direction, indicating that the acceleration effect comes from part of TS at other longitudes or latitudes. The shock acceleration effect can be easily lost if the TS is unrealistically smoothed due to a lack of spatial resolution in some previous MHD simulations. (2) The radial profile of cosmic ray flux strongly depends on longitude. There is a slight North-South asymmetry due to an asymmetric TS, but more difference of radial profile comes from the longitudinal effect. Voyager 1 and 2 are separated by ∼ 40° in longitude, simulations in these directions show large difference in the radial profile of cosmic ray flux. The apparent near zero radial gradient of cosmic ray flux derived directly out of the data from the two Voyager spacecraft does not reflect the true radial gradient in either of the directions because of the longitudinal effect. Therefore, the measured radial gradient cannot be used to extrapolate the level of cosmic ray flux in local interstellar space. Various other simulations are also performed to show how particle diffusion coefficient, cosmic ray energy, and interstellar spectrum can affect the above conclusions. In addition, the result of simulation is also compared with the cosmic ray energy spectrum obtained by the Pamela Satellite in low Earth orbit. It is shown that the cosmic ray intensity measured by Pamela is always lower than the modulation simulation result, demonstrating that the Pamela data suffer additional effect from the Earth's magnetic field.;To understand the transient modulation seen by Voyager in the heliosheath, this dissertation also studies the effect of Global Merged Interaction Region (GMIR) on cosmic ray transport. A GMIR model with intensified magnetic field and increased solar wind speed is constructed and incorporated into the cosmic ray transport code. The simulation reproduces decrease of cosmic ray flux upon the arrival of the GMIR at the spacecraft, consistent with previous simulation performed for inner region of the supersonic solar wind. However, as the simulation location is moved outside of the TS, it shows a new feature. Cosmic ray flux begins to decrease as the GMIR arrives at TS, which can be months prior to the GMIR arrival at the spacecraft. Spacecraft inside the heliosheath, such as Voyager 1, can remotely sense the time when the GMIR arrives at TS. Based on this remote sensing feature, the radial distance of the TS along the Voyager 1 direction is estimated to be about 91AU in 2006, a value agrees well with Voyager observation of an inward propagating North-South asymmetric TS.
机译:为了了解两个Voyager航天器在距离终止冲击(TS)和日鞘的区域大于100 AU时看到的宇宙线调制行为,将真实的磁水动力(MHD)全球日球模型纳入了宇宙线传输代码,这样就可以揭示出日球边界及其等离子/磁性几何形状的详细影响。使用此代码进行的宇宙射线调制的许多模拟得出以下结论。 (1)TS的扩散冲击加速度(DSA)可以显着影响宇宙射线通量的水平,特别是在TS附近区域和内部日鞘中的径向梯度分布。在加速作用下,宇宙射线径向通量大约在TS区域显示出增强,从而导致整个TS上宇宙射线通量的径向梯度有所不同。径向坡度的变化不会在相同方向上恰好在TS径向距离处发生,这表明加速效果来自其他经度或纬度上的TS部分。如果在某些先前的MHD模拟中由于空间分辨率的不足而使TS不切实际地平滑,那么震荡加速效果很容易失去。 (2)宇宙射线通量的径向分布很大程度上取决于经度。由于TS不对称,南北存在轻微的不对称性,但径向轮廓的更多差异来自纵向效应。旅行者1和旅行者2的经度间隔约为40°,在这些方向上的模拟显示,宇宙射线通量的径向分布差异很大。直接从两个航海家太空船的数据中得出的宇宙射线通量的明显接近零的径向梯度由于纵向效应而无法在两个方向的任何一个上反映出真实的径向梯度。因此,测得的径向梯度不能用于推断局部星际空间中宇宙射线通量的水平。还进行了各种其他模拟,以显示粒子扩散系数,宇宙射线能量和星际光谱如何影响上述结论。此外,还将模拟结果与帕米拉卫星在低地球轨道上获得的宇宙射线能谱进行了比较。结果表明,帕米拉测得的宇宙射线强度始终低于调制模拟结果,表明帕米拉数据受到地球磁场的附加影响。为了了解旅行者在日鞘中看到的瞬态调制,本论文也研究全球合并相互作用区域(GMIR)对宇宙射线传输的影响。构造了具有增强的磁场和增加的太阳风速的GMIR模型,并将其合并到宇宙射线传输代码中。该模拟重现了GMIR到达航天器后宇宙射线通量的减少,这与先前对超音速太阳风的内部区域进行的模拟一致。但是,随着仿真位置移到TS之外,它显示了一个新功能。随着GMIR到达TS的宇宙射线通量开始减少,这可能是GMIR到达航天器的几个月之前。螺旋鞘内部的航天器,例如旅行者1号,可以远程感测GMIR到达TS的时间。基于这种遥感特征,2006年TS沿着旅行者1方向的径向距离估计约为91AU,该值与Voyager对向内传播的南北不对称TS的观测非常吻合。

著录项

  • 作者

    Luo, Xi.;

  • 作者单位

    Florida Institute of Technology.;

  • 授予单位 Florida Institute of Technology.;
  • 学科 Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农学(农艺学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号