首页> 外文学位 >Acceleration of Hardware Testing and Validation Algorithms using Graphics Processing Units.
【24h】

Acceleration of Hardware Testing and Validation Algorithms using Graphics Processing Units.

机译:使用图形处理单元加速硬件测试和验证算法。

获取原文
获取原文并翻译 | 示例

摘要

With the advances of very large scale integration (VLSI) technology, the feature size has been shrinking steadily together with the increase in the design complexity of logic circuits. As a result, the efforts taken for designing, testing, and debugging digital systems have increased tremendously. Although the electronic design automation (EDA) algorithms have been studied extensively to accelerate such processes, some computational intensive applications still take long execution times. This is especially the case for testing and validation. In order to meet the time-to-market constraints and also to come up with a bug-free design or product, the work presented in this dissertation studies the acceleration of EDA algorithms on Graphics Processing Units (GPUs). This dissertation concentrates on a subset of EDA algorithms related to testing and validation. In particular, within the area of testing, fault simulation, diagnostic simulation and reliability analysis are explored. We also investigated the approaches to parallelize state justification on GPUs, which is one of the most difficult problems in the validation area.;Firstly, we present an efficient parallel fault simulator, FSimGP 2, which exploits the high degree of parallelism supported by a state-of-the-art graphic processing unit (GPU) with the NVIDIA Compute Unified Device Architecture (CUDA). A novel three-dimensional parallel fault simulation technique is proposed to achieve extremely high computation efficiency on the GPU. The experimental results demonstrate a speedup of up to 4x compared to another GPU-based fault simulator.;Then, another GPU based simulator is used to tackle an even more computation-intensive task, diagnostic fault simulation. The simulator is based on a two-stage framework which exploits high computation efficiency on the GPU. We introduce a fault pair based approach to alleviate the limited memory capacity on GPUs. Also, multi-fault-signature and dynamic load balancing techniques are introduced for the best usage of computing resources on-board.;With continuously feature size scaling and advent of innovative nano-scale devices, the reliability analysis of the digital systems becomes more important nowadays. However, the computational cost to accurately analyze a large digital system is very high. We proposes an high performance reliability analysis tool on GPUs. To achieve highmemory bandwidth on GPUs, two algorithms for simulation scheduling and memory arrangement are proposed. Experimental results demonstrate that the parallel analysis tool is efficient, reliable and scalable.;In the area of design validation, we investigate state justification. By employing the swarm intelligence and the power of parallelism on GPUs, we are able to efficiently find a trace that could help us reach the corner cases during the validation of a digital system.;In summary, the work presented in this dissertation demonstrates that several applications in the area of digital design testing and validation can be successfully rearchitected to achieve maximal performance on GPUs and obtain significant speedups. The proposed algorithms based on GPU parallelism collectively aim to contribute to improving the performance of EDA tools in Computer aided design (CAD) community on GPUs and other many-core platforms.
机译:随着超大规模集成电路(VLSI)技术的发展,特征尺寸随着逻辑电路设计复杂度的增加而稳步缩小。结果,用于设计,测试和调试数字系统的工作量大大增加了。尽管已经广泛研究了电子设计自动化(EDA)算法来加速此类过程,但是某些计算密集型应用程序仍需要较长的执行时间。对于测试和验证尤其如此。为了满足上市时间的限制并提出无错误的设计或产品,本文提出的工作研究了图形处理单元(GPU)上EDA算法的加速。本文主要研究与测试和验证有关的EDA算法的子集。特别是在测试领域内,探索了故障仿真,诊断仿真和可靠性分析。我们还研究了在GPU上并行化状态证明的方法,这是验证领域中最困难的问题之一;首先,我们提出了一种有效的并行故障模拟器FSimGP 2,该模拟器利用了状态支持的高度并行性NVIDIA Compute Unified设备架构(CUDA)的最先进图形处理单元(GPU)。提出了一种新颖的三维并行故障仿真技术,以在GPU上实现极高的计算效率。实验结果表明,与另一个基于GPU的故障模拟器相比,其速度提高了4倍;然后,另一个基于GPU的模拟器被用于解决计算量更大的任务,即诊断故障仿真。该模拟器基于两阶段框架,该框架利用了GPU上的高计算效率。我们引入一种基于故障对的方法来减轻GPU上有限的内存容量。此外,为了充分利用板载计算资源,还引入了多故障签名和动态负载平衡技术。随着功能尺寸的不断缩放和创新的纳米级设备的出现,数字系统的可靠性分析变得更加重要。如今。但是,准确分析大型数字系统的计算成本非常高。我们提出了一种用于GPU的高性能可靠性分析工具。为了在GPU上实现高内存带宽,提出了两种用于仿真调度和内存安排的算法。实验结果表明,该并行分析工具高效,可靠,可扩展。在设计验证领域,我们研究了状态证明。通过在GPU上使用群智能和并行功能,我们能够有效地找到一条痕迹,可以帮助我们在数字系统验证期间找到关键案例。总而言之,本论文中的工作表明,可以成功地重新设计数字设计测试和验证领域的应用程序,以在GPU上实现最大性能并获得显着的加速。所提出的基于GPU并行性的算法共同致力于改善GPU和其他多核平台上的计算机辅助设计(CAD)社区中EDA工具的性能。

著录项

  • 作者

    Li, Min.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号