首页> 外文学位 >Design of electrolyzer for carbon dioxide conversion to fuels and chemicals.
【24h】

Design of electrolyzer for carbon dioxide conversion to fuels and chemicals.

机译:用于将二氧化碳转化为燃料和化学品的电解器的设计。

获取原文
获取原文并翻译 | 示例

摘要

The stabilization of global atmospheric CO2 levels requires a transition towards a renewable energy based economy as well as methods for handling current CO2 output from fossil fuels. Challenges with renewable energy intermittency have thus far limited the use of these alternative energy sources to only a fraction of the current energy portfolio. To enable more widespread use of renewable energy systems, methods of large scale energy storage must be developed to store excess renewable energy when demand is low and allow for combined use of energy storage and renewable systems when demand is high. To date, no one technique has demonstrated energy storage methods on the gigawatt scale needed for integration with renewable sources; therefore the development of suitable energy storage technologies, such as CO2 electrolysis to fuels is needed. In this work, research efforts have focused on two major thrusts related to electrochemical methods of CO 2 conversion to fuels. The first thrust focuses on the synthesis and design of highly efficient anode and cathode catalysts with emphasis on understanding structure-property relationships. A second thrust focuses on the design of novel electrochemical devices for CO2 conversion and integration of synthesized materials into flow cell systems.;On the anode side, the synthesis of highly active catalysts using abundant transition metals is crucial to reducing capital costs and enabling widespread use of electrochemical CO2 conversion devices. Highly active mesoporous Co3O4 and metal-substituted Co3O4 water oxidation catalysts were designed to investigate the role of the spinel structure on water oxidation activity. Further analysis of metal substituted samples reveal the importance of the octahedral sites in the spinel structure, which was later used to design an Mg-Co3O4 sample with improved water oxidation activity.;The design of efficient cathode materials which can selectivity reduce CO2 to fuels and chemicals is critical to the widespread use of CO2 electrolysis. A nanoporous Ag material was synthesized through a dealloying technique able to operate with less than 0.5 V overpotential and high selectivity towards CO. CO is a valuable intermediate chemical which can used in Fischer-Tropsch or Gas-to-liquids technologies to produce liquids fuels. A detailed investigation of nanostructured Ag catalysts found stepped sites to be responsible for enhanced CO2 reduction activity due to improved stabilization of the COOH intermediate on the catalyst surface. In addition, an low-cost Zn dendrite electrocatalyst was developed using an electroplating technique. Low coordinated sites formed through electrodeposition demonstrated the suppression of hydrogen evolution while maintaining CO activity. The Zn dendrite electrocatalyst was further examined using a newly developed in situ X-ray absorption technique able to probe catalyst stability and crystalline structure under CO2 reduction operating conditions.;A final hurdle in the realization of CO2 electrolysis technologies is the integration of catalysts into working flow cell devices. To address this issue and enable testing in a practical system, a highly efficient and robust CO2 electrolysis flow cell was designed including the scale up of the previous nanoporous Ag synthesis procedure. Using the modified porous Ag catalyst, currents in the Amp regime were demonstrated approaching rates needed for energy storage applications. Stability on the order of days was successfully demonstrated due to use of robust system components and conditions suitable for process scale up.
机译:全球大气中二氧化碳水平的稳定要求向可再生能源经济过渡,以及处理当前从化石燃料中产生的二氧化碳的方法。迄今为止,可再生能源间歇性的挑战已将这些替代能源的使用限制为目前能源组合的一小部分。为了使可再生能源系统得到更广泛的使用,必须开发大规模储能的方法,以在需求低时存储过量的可再生能源,并在需求高时允许能量存储和可再生系统的组合使用。迄今为止,还没有一种技术能够证明与可再生能源整合所需的千兆瓦级储能方法。因此,需要开发合适的储能技术,例如将CO2电解成燃料。在这项工作中,研究工作集中在与将CO 2转化为燃料的电化学方法有关的两个主要方面。第一个重点是着重于高效阳极和阴极催化剂的合成和设计,同时着重于了解结构性质之间的关系。第二个重点是设计新颖的电化学装置,用于二氧化碳转化以及将合成材料整合到流通池系统中。在阳极方面,使用丰富的过渡金属合成高活性催化剂对于降低投资成本和广泛使用至关重要。电化学CO2转化装置的制造。设计了高活性介孔Co3O4和金属取代的Co3O4水氧化催化剂,以研究尖晶石结构对水氧化活性的作用。对金属取代样品的进一步分析揭示了尖晶石结构中八面体位点的重要性,后来将其用于设计具有改善的水氧化活性的Mg-Co3O4样品;有效阴极材料的设计可以选择性地减少燃料和二氧化碳的二氧化碳排放化学药品对于广泛使用CO2电解至关重要。纳米多孔Ag材料是通过脱合金技术合成的,该合金能够在低于0.5 V的超电势下运行,并且对CO的选择性高。CO是一种有价值的中间化学品,可用于费-托技术或气-液技术生产液体燃料。纳米结构Ag催化剂的详细研究发现,由于COOH中间体在催化剂表面的稳定性提高,阶梯状位点可提高CO2还原活性。另外,使用电镀技术开发了低成本的Zn树枝状的电催化剂。通过电沉积形成的低配位位点显示出在维持CO活性的同时抑制了氢的释放。使用新开发的原位X射线吸收技术进一步研究了Zn枝晶电催化剂,该技术能够探测在CO2还原操作条件下的催化剂稳定性和晶体结构。;实现CO2电解技术的最后一个障碍是将催化剂整合到工作中流通池设备。为了解决此问题并在实际系统中进行测试,设计了一种高效且坚固的CO2电解流通池,其中包括放大先前的纳米多孔Ag合成程序。使用改性的多孔Ag催化剂,已证明Amp态的电流接近储能应用所需的速率。由于使用了健壮的系统组件和适用于过程放大的条件,因此成功地证明了几天左右的稳定性。

著录项

  • 作者

    Rosen, Jonathan S.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号