...
首页> 外文期刊>Journal of power sources >High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels
【24h】

High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels

机译:高效中温固体氧化物电解槽,用于将二氧化碳转化为燃料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electrochemical reduction of carbon dioxide in the intermediate temperature region was investigated by utilizing a reversible solid oxide electrolysis cell (SOEC). The current-potential (i-V) curve exhibited a nonlinear characteristic at low current density. Differentiation of i-V curves revealed that the cell area specific resistance (ASR) was current-dependent and had its maximum in electrolysis mode and minimum in fuel cell mode. Impedance measurements were performed under different current densities and gas compositions, and the results were analyzed by calculating the distribution of relaxation times. The ASR variation resulted from the difference in electrochemical reactions occurring on the Ni-YSZ electrode, i.e., Ni-YSZ is a better electrode for CO oxidation than for CO_2 reduction. Coke formation on Ni -YSZ played a crucial role in affecting its electrolysis performance in the intermediate temperature region. The ASR apex was associated with a decrease in cell temperature during electrolysis due to the endothermic nature of CO_2 reduction reaction. It was postulated that such a decrease in temperature and rise in CO concentration led to coke formation. As a consequence, higher temperature (>700 ℃), higher CO_2 concentration (>50%), and the presence of hydrogen or steam are recommended for efficient CO_2 reduction in solid oxide electrochemical cells.
机译:通过利用可逆固体氧化物电解池(SOEC)研究了在中间温度区域内二氧化碳的电化学还原。电流电位(i-V)曲线在低电流密度下表现出非线性特性。 i-V曲线的微分表明,电池面积比电阻(ASR)与电流有关,在电解模式下最大,而在燃料电池模式下最小。在不同的电流密度和气体成分下进行阻抗测量,并通过计算弛豫时间的分布来分析结果。 ASR变化是由发生在Ni-YSZ电极上的电化学反应的差异引起的,即Ni-YSZ对于CO氧化比对CO_2还原是更好的电极。 Ni -YSZ上焦炭的形成在影响其在中温区的电解性能方面起着至关重要的作用。由于CO_2还原反应的吸热特性,ASR顶点与电解过程中电池温度的降低有关。据推测,这样的温度降低和CO浓度的升高导致焦炭形成。因此,建议使用较高的温度(> 700℃),较高的CO_2浓度(> 50%)以及存在氢或水蒸气,以有效地减少固体氧化物电化学电池中的CO_2。

著录项

  • 来源
    《Journal of power sources》 |2014年第15期|79-84|共6页
  • 作者单位

    Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China,University of Chinese Academy of Sciences, Beijing 100049, China;

    Department of Chemical Engineering, University of South Carolina, Columbia, SC 29028, USA;

    Department of Chemical Engineering, University of South Carolina, Columbia, SC 29028, USA;

    Pacific Northwest National Laboratory, Richland, WA 99352, USA;

    Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;

    Department of Chemical Engineering, University of South Carolina, Columbia, SC 29028, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    High temperature electrolysis; CO_2 reduction; Distribution of relaxation times analysis; Carbon deposition;

    机译:高温电解;减少CO_2;分布弛豫时间分析;积碳;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号