首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels
【2h】

PNAS Plus: Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

机译:PNAS Plus:热力学和可实现的效率可通过太阳能驱动的电化学方式减少二氧化碳排放到运输燃料中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
机译:研究了由太阳能驱动的水和二氧化碳向燃料的电化学转化的热力学,可实现的和实际的效率极限,这些极限是吸光剂组成和构型以及催化剂组成的函数。各种太阳能燃料的绝热电化学合成在1阳光照射下的最大热力学效率为32–42%。发现单结,双结和三结光吸收器分别适合于0-0.9 V,0.9-1.95 V和1.95-3.5 V的电化学负载范围。可使用理想的双结和三结光吸收剂以及银和铜阴极上的C​​O2还原的电化学负载曲线以及氧化铱上的水氧化动力学来确定可达到的太阳能转换效率。合成气(H2和CO)和乙烷(H2和CH4)的最大STF效率分别为18.4%和20.3%。光电化学电池(PEC)的实际STF效率可以低至0.8%,而串联PEC和光伏(PV)电解器在相同的工作条件下可以以7.2%的速度工作。我们表明,通过调节三结型光吸收剂的带隙和/或催化剂与PV的面积比也可以调节太阳能燃料的组成和能量含量,并且液体产物和C2H4的合成具有高盈利指数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号