首页> 外文期刊>Physical chemistry chemical physics: PCCP >Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide
【24h】

Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide

机译:电解质,催化剂,膜组成和操作条件对太阳能驱动的二氧化碳电化学还原性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Solar-driven electrochemical cells can be used to convert carbon dioxide, water, and sunlight into transportation fuels or into precursors to such fuels. The voltage efficiency of such devices depends on the (i) physical properties of its components (catalysts, electrolyte, and membrane); (ii) operating conditions (carbon dioxide flowrate and pressure, current density); and (iii) physical dimensions of the cell. The sources of energy loss in a carbon dioxide reduction (CO2R) cell are the anode and cathode overpotentials, the difference in pH between the anode and cathode, the difference in the partial pressure of carbon dioxide between the bulk electrolyte and the cathode, the ohmic loss across the electrolyte and the diffusional resistances across the boundary layers near the electrodes. In this study, we analyze the effects of these losses and propose optimal device configurations for the efficient operation of a CO2R electrochemical cell operating at a current density of 10 mA cm(-2). Cell operation at near-neutral bulk pH offers not only lower polarization losses but also better selectivity to CO2R versus hydrogen evolution. Addition of supporting electrolyte to increase its conductivity has a negative impact on cell performance because it reduces the electric field and the solubility of CO2. Addition of a pH buffer reduces the polarization losses but may affect catalyst selectivity. The carbon dioxide flowrate and partial pressure can have severe effects on the cell efficiency if the carbon dioxide supply rate falls below the consumption rate. The overall potential losses can be reduced by use of an anion, rather than a cation, exchange membrane. We also show that the maximum polarization losses occur for the electrochemical synthesis of CO and that such losses are lower for the synthesis of products requiring a larger number of electrons per molecule, assuming a fixed current density. We also find that the reported electrocatalytic activity of copper below -1 V vs. RHE is strongly influenced by excessive polarization of the cathode and, hence, does not represent its true activity at bulk conditions. This article provides useful guidelines for minimizing polarization losses in solar-driven CO2R electrochemical cells and a method for predicting polarization losses and obtaining kinetic overpotentials from measured partial current densities.
机译:太阳能驱动的电化学电池可用于将二氧化碳,水和阳光转化为运输燃料或此类燃料的前体。此类设备的电压效率取决于(i)其组件(催化剂,电解质和膜)的物理特性; (ii)工作条件(二氧化碳流量和压力,电流密度); (iii)电池的物理尺寸。二氧化碳还原(CO2R)电池中能量损失的来源是阳极和阴极过电势,阳极和阴极之间的pH差异,本体电解质和阴极之间的二氧化碳分压差异,欧姆性电解质上的损耗和电极附近边界层上的扩散电阻。在这项研究中,我们分析了这些损耗的影响,并提出了最佳的器件配置,以使CO2R电化学电池在10 mA cm(-2)的电流密度下有效运行。在接近中性的整体pH值下,电池运行不仅提供了更低的极化损失,而且相对于析氢而言,对CO2R的选择性更高。添加支持电解质以增加其电导率会对电池性能产生负面影响,因为它降低了电场和CO2的溶解度。添加pH缓冲液可减少极化损失,但可能会影响催化剂的选择性。如果二氧化碳的供应速率低于消耗速率,则二氧化碳的流量和分压会严重影响电池效率。通过使用阴离子交换膜而不是阳离子交换膜可以减少总的电势损失。我们还表明,最大的极化损耗发生在CO的电化学合成中,并且假设电流密度固定,这种损耗对于需要每个分子具有更多电子数量的产物的合成而言较低。我们还发现,相对于RHE,低于-1 V的铜的电催化活性受到阴极过度极化的强烈影响,因此,并不代表其在本体条件下的真实活性。本文为使太阳能驱动的CO2R电化学电池中的极化损耗最小化提供了有用的指导,并提供了一种预测极化损耗并从测得的部分电流密度获得动力学超电势的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号