首页> 外文学位 >Engineering principles to design and analyze patterned neuronal cultures using multielectrode arrays.
【24h】

Engineering principles to design and analyze patterned neuronal cultures using multielectrode arrays.

机译:使用多电极阵列设计和分析带图案的神经元文化的工程原理。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses several issues related to the construction of reliable and reproducible patterned neuronal cultures on planar multielectrode arrays (MEAs) for biological experiments. Discussed problems include multichannel recording and stimulation for multi-dimensional data analysis, the effect of electrode geometry on spike detection, the longevity of patterned cultures on MEAs, reliable extracellular spike detection, interference with astroglial cells in terms of neuronal confinement and spike detection. MEAs were used to record evoked responses as well as spontaneous activity of patterned cultures in vitro. These cultures showed synchronized bursting activity after 2 weeks and time-locked responses in respond to electrical stimulations. Different electrode configurations were tested to study the relation between cell/electrode coupling and spike waveforms. An epoxy terminated organosilane (3-gylcidoxypropyl trimethoxysilane) was used as an easy and reproducible protein linker that can produce a stable long-lasting cell pattern for the study of patterned network in vitro. Metal electrodes of MEAs were chemically modified with organosilane or alkanethiol based self-assembled monolayers to fabricate cell-attractive electrodes. The electrode modification did not degrade the capability of neural recording, but expected cell migration toward electrodes was not observed. The growth of astroglial cells was characterized by measuring the compliance to underlying protein or neuronal patterns. Majority of astroglial cells stayed near neurons, which resulted in a confined growth of both neurons and astroglial cells. The results in this dissertation are expected to contribute to the development of in vitro model for basic neuroscience or neural prosthesis researches in the future.
机译:本文解决了与在生物实验的平面多电极阵列(MEA)上构建可靠和可复制的模式化神经元培养物有关的几个问题。讨论的问题包括用于多维数据分析的多通道记录和刺激,电极几何形状对峰值检测的影响,MEA上有图案的培养物的寿命,可靠的细胞外峰值检测,在神经元限制和峰值检测方面对星形胶质细胞的干扰。 MEAs用于记录诱发反应以及体外模式培养物的自发活性。这些培养物在2周后显示出同步的爆发活动,并在响应电刺激时出现了时间锁定反应。测试了不同的电极配置,以研究电池/电极耦合与尖峰波形之间的关系。环氧封端的有机硅烷(3-环氧丙氧基丙基三甲氧基硅烷)被用作一种易于复制的蛋白连接子,可以产生稳定的持久细胞模式,用于体外模式网络的研究。 MEA的金属电极经过有机硅烷或链烷硫醇基自组装单分子层化学修饰,以制造具有细胞吸引力的电极。电极修饰不会降低神经记录的能力,但未观察到预期的细胞向电极迁移。通过测量对基础蛋白质或神经元模式的顺应性来表征星形胶质细胞的生长。多数星形胶质细胞都停留在神经元附近,这导致神经元和星形胶质细胞的局限性生长。本文的研究结果有望为今后基础神经科学或神经假体研究的体外模型的发展做出贡献。

著录项

  • 作者

    Nam, Yoonkey.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号