首页> 外文学位 >Gene synthesis from oligonucleotide mixtures by solid phase PCR and assembly PCR in a microfluidic chip system.
【24h】

Gene synthesis from oligonucleotide mixtures by solid phase PCR and assembly PCR in a microfluidic chip system.

机译:在微流控芯片系统中通过固相PCR和组装PCR从寡核苷酸混合物中合成基因。

获取原文
获取原文并翻译 | 示例

摘要

The conventional gene synthesis methods, chemical or PCR, usually require over 2 weeks because of the separate executions of the different procedures. An integrated microfluidic chip system was designed to reduce this processing time to only 2 days with much less reaction volumes, and experimental reagent and solvent requirements. This fast high throughput gene synthesis method considerably minimizes contamination and simplifies material handling procedures. Our overall aim in this project is using the above-mentioned advantages of this system to synthesize long genes of arbitrary sequence with high purity, and cut the lead times and cost per base from the current values by at least one order of magnitude. In order to do this, four different steps are included in the microfluidic chip system: oligonucleotide synthesis and amplification on solid phase, on-chip purification, long DNA assembly, and gene transformation. The designed oligonucleotides to form the long DNAs were synthesized via light-directed phosphoramidite chemistry, and amplified on solid phase. The amplified products were treated by on-surface hybridization using complementary probes to make single strands and purification. The purified oligonucleotides were assembled into long DNAs on chip, and amplified with polymerase chain reaction in a separate microfluidic chip chamber. Finally, the synthetic target gene was transformed on a chip for gene expression. Our results showed these individual steps in bringing the system capability to a simultaneous production level of tens of double stranded oligonucleotides of lengths ranging from 0.2 to 1.2 kb and the potential of microfluidic gene and protein synthesis system.
机译:传统的基因合成方法(化学或PCR)通常需要2周以上的时间,因为需要分别执行不同的步骤。设计了集成的微流控芯片系统,以将处理时间减少到只有2天,而反应体积以及实验试剂和溶剂的需求要少得多。这种快速的高通量基因合成方法极大地减少了污染,并简化了材料处理程序。我们在本项目中的总体目标是利用该系统的上述优势来合成具有高纯度的任意序列的长基因,并将交货期和每碱基的成本从当前值减少至少一个数量级。为了做到这一点,微流体芯片系统包括四个不同的步骤:寡核苷酸在固相上的合成和扩增,芯片上的纯化,长的DNA组装和基因转化。通过光导亚磷酰胺化学合成设计的寡核苷酸以形成长DNA,并在固相上扩增。使用互补探针通过表面杂交处理扩增的产物以制备单链并纯化。将纯化的寡核苷酸组装成芯片上的长DNA,并在单独的微流体芯片腔中通过聚合酶链反应进行扩增。最后,将合成的靶基因转化到用于基因表达的芯片上。我们的结果显示了使系统功能达到数十个长度范围从0.2到1.2 kb的双链寡核苷酸的同时生产水平的这些单独步骤,以及微流体基因和蛋白质合成系统的潜力。

著录项

  • 作者

    Lee, Woong Hee.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号